
Mobilizing the Micro-Ops: Exploiting Context Sensitive Decoding
for Security and Energy Efficiency

Mohammadkazem Taram Ashish Venkat Dean M. Tullsen
University of California, San Diego

{mtaram | asvenkat | tullsen}@cs.ucsd.edu

Abstract—Modern instruction set decoders feature transla-
tion of native instructions into internal micro-ops to simplify
CPU design and improve instruction-level parallelism. However,
this translation is static in most known instances. This work
proposes context-sensitive decoding, a technique that enables
customization of the micro-op translation at the microsecond
or faster granularity, based on the current execution context
and/or preset hardware events. While there are many potential
applications, this work demonstrates its effectiveness with two
use cases: 1) as a novel security defense to thwart instruc-
tion/data cache-based side-channel attacks, as demonstrated
on commercial implementations of RSA and AES and 2)
as a power management technique that performs selective
devectorization to enable efficient unit-level power gating.

This architecture, first by allowing execution to transition
between different translation modes rapidly, defends against
a variety of attacks, completely obfuscating code-dependent
cache access, only sacrificing 5% in steady-state performance –
orders of magnitude less than prior art. By selectively disabling
the vector units without disabling vector arithmetic, context-
sensitive decoding reduces energy by 12.9% with minimal loss
in performance. Both optimizations work with no significant
changes to the pipeline or the external ISA.

Keywords-Microcode; Side Channel; Security; Power Gating;

I. INTRODUCTION

The post-Dennard scaling era has witnessed an upsurge in
the adoption of specialized processing elements to improve
the execution efficiency of domain-specific workloads. While
general-purpose processors continue to gradually add domain-
specific instructions every CPU generation, the technical
challenges and market risks associated with legacy software
have significantly limited innovation in the ISA design
space. This work exploits an underutilized feature of modern
instruction set decoders to show that even general-purpose
processors can be customized, and in fact that customization
can be seamlessly configured dynamically at an extremely
fine granularity.

The key to this change is the fact that most modern
processors employ translated ISAs, as the Intel and AMD
x86 processors and many ARM processors typically feature
translation from the native instruction set into internal micro-
ops that enter the pipeline for execution [1], [2]. These
architectures enjoy the dual benefits of a versatile backward-
compatible CISC front-end and a simple cost-effective RISC
back-end. Moreover, the additional level of indirection
enables seamless optimization of the internal micro-op ISA,
under the covers, without any change to the programmer
interface. However, for those architectures the translation is
static, changing once per generation. Instead, we propose
that translation be dynamic, potentially changing frequently
within the execution of a single program.

In this paper, we unlock the full potential of translated ISAs
via context-sensitive decoding (CSD), a technique that allows
native instructions to be decoded/translated into a different set
of custom micro-ops based on their current execution context.

This presents operating systems, runtime systems, and
antivirus programs with the unique opportunity of triggering
different custom translation modes, at microsecond or finer
granularity, by simply configuring a set of model-specific
registers (MSRs). In this way, for example, an insecure
executable can instantly become a secure executable, or
performance-optimized code can become energy-optimized,
without recompilation or binary translation.

By leveraging existing native-to-microcode translation
functionality in the decoder and exploiting an already well-
established microcode update procedure outlined by Intel [1],
we further empower runtime systems and virtual machines
(that operate at a certain privilege level) to push custom
translation updates written in native x86 code into the
processor. At the decode stage of the pipeline, the CSD
framework intercepts such custom microcode updates, auto-
translates and optimizes them into a compact set of micro-
ops, and pushes them into the microcode engine. These
custom updates could potentially enable instrumentation
for profiling and performance monitoring, profile-guided
optimizations, and API-hooks for security updates, among
other applications.

The CSD framework we describe allows custom translation
modes to be triggered by hotspot detection [3], unit-criticality
predictors [4], thread-criticality predictors [5], protection-
domain crossings [6], interception of a tainted input [7], [8],
[9], [10], a watchdog timer event, changes in power or energy
availability, or thermal events – all with no significant changes
to the pipeline or the ISA. In fact, a major contribution of
this work is a set of microarchitectural techniques that enable
the seamless integration of the context-sensitive decoding
framework into Intel’s legacy decode pipeline and micro-op
cache design.

Due to its low performance overhead and non-intrusive
nature, context-sensitive decoding has potential applications
in areas such as malware detection and prevention [11],
[12], [13], dynamic information flow tracking (DIFT) [7],
[14], [15], [10], runtime profiling and performance program-
ming [16], [17], on-demand type-safety [18], [19], program
verification and debugging [20], [21], [22], and runtime
phase tracking and code specialization [23], [24]. This
paper showcases two diverse applications of context-sensitive
decoding – an obfuscation-based security defense against
cache-based side channel attacks, and criticality-aware power
gating to improve energy efficiency.

Side-channel attacks have been used to leak secret infor-
mation by exploiting the micro-architectural and physical
characteristics of a cryptosystem. Many types of side-channel
attacks have been described in the literature to subvert
prominent cryptographic algorithms such as RSA, DES, and
AES. These attacks hinge on a spy program running side-
by-side with a victim that leaks timing and other execution
characteristics via shared micro-architectural structures.



By leveraging custom translation modes offered by context-
sensitive decoding, we provide a low-cost, high-performance,
and reconfigurable alternative to existing side-channel miti-
gations [25], [26], [27]. Owing to its unfettered access to on-
chip microarchitectural structures and an array of hardware
control signals, context-sensitive decoding allows us to inject
decoy micro-ops into execution that give the attacker an
illusion of a modified architectural state, by obfuscating
micro-architectural characteristics alone. These decoy micro-
ops are unreadable from both user and kernel modes as they
exist within the processor outside any addressable memory.
As a result, they remain invulnerable to spyware, rootkits,
and other rogue programs, even if they are able to execute
with the highest privileges. This paper shows that by causing
micro-architectural perturbations at the decoder level, we
can be more performance-efficient than a software-based
obfuscation technique and less intrusive than a system that
causes anomalies at the gate level.

Aside from security, we also showcase the potential of
CSD in efficiently emulating infrequently used feature sets
on alternative functional units. This enables aggressive power
gating, even for units that are infrequently but regularly used.
In this case, we scalarize vector instructions via micro-op
translation onto the scalar units, enabling the system to make
more global decisions about when to turn on the vector
units, rather than always responding to instruction demand.
In summary, the framework we describe in this paper offers
the following unique capabilities:
• Fine-grained dynamic instruction stream customization

of legacy binaries without recompilation, and without
the full overhead of binary translation.

• Seamless integration into a state-of-the-art Intel proces-
sor with no significant changes to the pipeline.

• A flexible auto-translated microcode update procedure
that allows runtime systems to inject custom translation
modes into the microcode engine.

• A firmware-based security defense that completely
thwarts instruction and data cache-based side channel
attacks on the RSA and AES cryptographic algo-
rithms, while significantly outperforming state-of-the-art
software-only solutions.

• An energy-optimization mechanism that scalarizes vec-
tor instructions in order to power gate vector units during
phases of minimal vector activity to save an average of
12.9% in overall energy.

II. BACKGROUND AND RELATED WORK

Translated Instruction Sets. Modern ISAs such as x86
and ARM typically translate complex native instructions
into simpler internal micro-ops [1], [2]. While this was
originally intended to simplify CPU design and allow
complex long latency instructions to be pipelineable, it
has been instrumental in enabling several ISA and micro-
architectural optimizations [28], [29], [30], [31], [32] that
improve the front-end throughput and overall instruction-
level parallelism [33]. Speculative decode [28] exploits
the macro-op to micro-op translation in order to enable

dynamic optimizations such as memory reference combining
and silent store squashing. While similar in nature with
respect to decode-time instrumentation, CSD offers broader
functionalities such as the ability to be programmed via
microcode updates, on-demand customization at an extremely
fine granularity, as well as seamless integration into the
modern x86 front end.

Multi-ISA Architectures. Many modern decoders are
equipped with multiple decode units to translate instructions
from different feature sets, ISA extensions, and sometimes
completely different ISAs. For example, ARM supports three
major instruction sets (A32, T32, and A64) and several
other feature sets such as Jazelle and NEON. It also allows
developers and compilers to take advantage of the ability
to switch between the different instruction sets at exception
boundaries (A64 to A32) or by simply executing a branch and
exchange instruction (A32 to T32). Furthermore, the multi-
ISA heterogeneous chip multiprocessor architectures [34],
[35], [36], [37] allow applications to migrate back and forth
between different ISAs at basic block boundaries. While
this work offers similar capabilities in terms of seamlessly
switching execution between different custom translations, it
does so at a much finer granularity, requires no re-compilation,
and no significant changes to the architecture.

Binary Translators and Code-Morphing Machines. In
the software world, binary translators have long been used to
port/emulate legacy binaries on new architectures [38]. Fur-
thermore, managed runtimes and browsers employ dynamic
binary translation to perform profile-guided optimization [39]
of hot code regions, program sheperding, and JIT harden-
ing [40]. On the hardware front, several binary-translation-
driven processor designs have been proposed. These are
typically equipped with a code-morphing software binary
translation layer that feeds translated instructions into the
processor’s decoder. IBM’s DAISY [41], Transmeta’s Crusoe
and Efficieon [42], and Nvidia’s Denver processors [43] have
sparked further innovation in this space. Clark, et al. [44]
describe a hybrid approach to instruction set customization
that involves statically identifying code regions to offload
and dynamically replacing jumps to such regions by complex
custom instructions that trigger an accelerator.

The most related work to this research is DISE (Dynamic
Instruction Stream Editing) [45], [46], [47], a macro-engine
that exposes the API, allowing programmers to dynamically
reconfigure a stream of instructions in order to perform
bounds-checking, debugging, and prefetching. However, this
work differs in many important ways. First, they require
complex patten-matching and user-defined production rules to
be integrated into their decoder framework, whereas context-
sensitive decoding can be triggered by mere reconfiguration
of a set of model-specific registers or even a pipeline
event, or a thermal or energy event. Second, while this
work is easily integrated, exploiting existing features of
modern processors, DISE adds significant new complexity
to the pipeline. Third, this work fully explores performance,
power, and area implications of incorporating the decoding



framework into existing modern designs, including those that
sport a wide variety of micro-op optimizations [1]. Finally,
our research builds on works like DISE by introducing new
applications – better protection against several new attack
models that have gotten more sophisticated over the years,
and energy-efficient management of vector computation.

Side-channel attacks. Side-channel attacks typically steal
secret information from cryptosystems and other sensitive
data from a co-located user on the cloud [48], [49]. Nu-
merous spy programs have demonstrated the full/partial
reconstruction of a victim’s execution behavior by observing
its instruction/data cache access patterns [50], [51], [52],
[53], [54], branch access patterns [55], differential power con-
sumption characteristics [56], electromagnetic radiation [57],
acoustics [58], and fault behavior [59].

Several cache-based side channel attacks have been pro-
posed in the literature [60], [53], [61]. Prominent ones include
PRIME+PROBE and FLUSH+RELOAD attacks that can
be performed on both a shared private data/instruction
cache or on last-level caches. Notable mitigations to these
attacks include secure cache partitioning [25], compiler-based
obfuscation [26], [27], and run-time software diversity [62].
In this paper, we leverage context-sensitive decoding to
provide stealth-mode custom translations, as a novel security
defense that mitigates such side channel attacks. Context-
sensitive decoding-based security enhancement has no soft-
ware performance cost when not in use, minimal software
overhead when used, no additional vulnerability, and very
minimal hardware/power cost.

Unit-level Power Management. Many power manage-
ment techniques have been proposed in prior work ranging
from unit-level [63], [64], [65] to coarse-grained core-level
power management [66], [67], in both cases powering off
idle blocks to reduce overall static leakage. Vector processing
units (VPUs) are promising candidates for power gating since
they’re typically not in use during most scalar phases, and
yet account for a significant portion of the core’s peak power.
However, phases of intermittent vector activity create small
idle intervals that are below the break-even time needed to
compensate the power gating overhead.

Dynamic devectorization [68], [69] achieve significant
energy savings by using a translation optimization layer
to profile and devectorize non-critical vector instructions
while the VPUs are power-gated. Similarly, PowerChop [4]
proposes a binary translation-driven approach that uses a
unit-criticality predictor to assist power-gating of multiple
units in the processor (including VPUs). While binary
translation can be an effective tool, it is not ideal for adaptive
energy optimizations – in many scenarios we can hide
the considerable startup cost (in performance and energy)
of binary translation; however, when we trigger a new
optimization due to an energy event or emergency, we bear
the entire brunt of the startup cost at the worst possible time.

III. CONTEXT-SENSITIVE DECODING

In this section, we provide a brief overview of the x86 front-
end, describe techniques to enable context-sensitive decoding

MSRs

Macro-op 
Dispatcher

M
ac

ro
-o

p 
qu

eu
e

µop-Queue

De
co

de
rs

µop cache

Tag 
Array

µF
us

io
n 

Un
it

HW 
Watch
dog

Register 
Tracking 

Unit

CSD

MSROM

Regular 
Decoders

DIFT

Runtime 
Systme

C
TX

 

Other Triggers (Unit 
Criticality Predictor, Hot 

spot detecion, etc)

Macro-op Stream

Figure 1: Intel Front End with CSD Support.
in the x86 architecture, and discuss potential applications.
A. Overview of the x86 Front End

The x86 front end in Figure 1 has two major components:
(a) the legacy decode pipeline that translates native instruc-
tions into micro-ops, and (b) a micro-op cache that delivers
already translated micro-ops into the instruction queue.

The legacy decode pipeline includes an instruction-length
decoder that feeds from a 16-byte fetch buffer and decodes
the variable-length x86 instruction byte-by-byte. The decoded
instructions are inserted into an 18-entry macro-op queue, 6
macro-ops at a time. These macro-ops then feed into one of
the four decoders that translate them into micro-ops. These
decoders use a static table-driven approach for the micro-op
translation. In fact, only one of the decoders can translate an
instruction to more than one micro-op, with the other three
performing a simple one-to-one mapping operation. Complex
instructions that decompose into more than four micro-ops
are microsequenced by a microcode ROM.

The micro-ops translated by the legacy decode pipeline
are cached in an 8-way set associative micro-op cache that
can hold up to 1536 micro-ops. When the micro-op cache
is active, the legacy decode pipeline is disabled to conserve
power. The front-end then streams micro-ops from the micro-
op cache into the instruction (micro-op) queue until a miss
occurs, at which point it switches back to the legacy decode
pipeline. The front-end also sports a number of optimization
features such as stack-pointer tracking, micro-op fusion,
macro-op fusion, and loop stream detection.
B. Integration with the x86 Front End

This section describes techniques to integrate our ar-
chitecture into the x86 front end with the legacy decode
pipeline and micro-op cache designs, and further study its
synergy/interference with existing front-end optimizations
such as micro-op fusion. Figure 1 highlights necessary
hardware components required to enable context-sensitive
decoding in the x86 front-end.

Integration with the Legacy Decode Pipeline. To enable
context-sensitive decoding in the x86 front-end, we provision



the legacy decode pipeline with one or more custom decoders
that perform custom translations. These decoders continue to
employ a simple static table-driven translation model, like the
four native x86 decoders. However, they can generate more
sophisticated micro-op flows by relegating to the microcode
ROM. CSD does not require that micro-ops of an instruction
be committed atomically. This is consistent with the current
implementation of Intel processors which only commit 6
fused micro-ops per cycle while they allow as many as 260
micro-ops per one instruction (e.g., FBSTP) [70].

Furthermore, when context-sensitive decoding is turned
on, we update the macro-op dispatch logic to redirect macro-
ops that require custom translation to the custom decoder.
In our initial implementation, this logic can be triggered in
three different scenarios. First, software programs such as
the operating system can trigger this logic by configuring a
set of model-specific registers (MSRs) [1]. We leverage the
already existing register-tracking optimization in the decoder
to track updates to the MSRs and consequently trigger
context-sensitive decoding. Second, we allow a translation
context switch to be triggered by hardware events such as the
interception of a tainted input by information-flow tracking
or a power-gating decision by the unit criticality predictor.
Finally, we allow a hardware watchdog timer to periodically
trigger a translation mode switch.

Interactions with the Micro-Op Cache. The micro-op
cache is an important performance and energy optimization
that allows certain hot code regions to be completely serviced
from the micro-op cache. The Intel Optimization manual
recommends software to be carefully optimized since frequent
switching between the micro-op cache and the legacy decode
pipeline could cause more performance degradation than
running without the micro-op cache [71]. This particularly
conflicts with one of the major goals of context-sensitive
decoding – the ability to frequently switch translation context
at a low performance overhead.

Flushing the micro-op cache every translation mode switch
could have a major performance impact. We instead choose to
extend the tag bits of the micro-op cache with an additional
set of context bits (one bit per custom translation mode)
that associate a particular micro-op way with the decoder
that translated it. While this could potentially create artificial
conflict misses, it allows us to improve the micro-op cache
utilization by co-locating micro-op translations from different
custom decoders.

Finally, customization could involve injecting multiple
micro-ops at a time. This not only clutters the execution
stream, but could pollute the micro-op cache. The x86 micro-
op cache design has a check that does not allow 32-byte
code regions to occupy more than 3 ways (amounting to 18
micro-ops) in the micro-op cache. This is because, unlike a
regular cache, the micro-op cache simply allows the front-
end engine to stream instructions from it, to avoid expensive
indexing and tag comparison. Furthermore, it does not allow
instructions longer than six fused micro-ops to be cached.
Although we can imagine several options that would allow

the architecture to remove that constraint, to be conservative
we assume that it still holds in this paper, which does impact
many of our translated micro-op sequences.

C. MicroCode Update and Auto-Translation

CSD exploits the already existing Microcode update
(MCU) procedure of Intel processors [1] to empower the
runtime system with the ability to inject custom translations
into the processor’s microcode engine, with the API provided
to the runtime being the entire x86 instruction set. The
CSD framework further auto-translates such microcode
updates by exploiting Intel’s existing front-end translation
and optimization infrastructure. While this offers significant
flexibility to software agents such as the OS and the runtime
system, the chip designer exerts more control over the
microcode engine, potentially allowing custom translations
that include non user-visible features such as a micro-op that
can change the state of the branch predictor or the hardware
return address stack. We also note that custom translations
injected via microcode updates should not alter architectural
register and memory state, unless explicitly specified in the
MCU header.

Figure 2 shows the MCU procedure in more detail. Since
microcode update is performed via a privileged instruction or
system call, only trusted entities [72], [73], [74] within the
OS/runtime system should have the ability to successfully
inject microcode updates into the processor. The microcode
update system call invokes Intel’s microcode driver [75] that
performs sanity and integrity checks, and further invokes the
processor’s microcode update feature via an MSR update[1].
The MCU itself is provisioned with a descriptive header
prepended by data containing custom translations injected by
the runtime. When the header contains a reserved field that
indicates context-sensitive decoding, the microcode update
is assumed to contain only native x86 instructions, and is
further marked for auto-translation. On the processor end,
the MCU header is again verified for sanity and integrity,
before extracting the data part. In the event that the MCU
is marked for auto-translation, the native instructions in the
data part of the MCU are further translated into internal
micro-ops by leveraging the existing translation capabilities
in the decoder. The translated micro-ops are further optimized
into more compact micro-ops using existing front-end opti-
mizations such as macro/micro-op fusion, adhering to certain
performance guidelines described below. We further note that
virtually all of the building blocks we use to provide this
feature are already well-established mechanisms that appear
in mainstream Debian Linux kernel releases[75].

D. Performance Guidelines and Optimizations

The micro-op expansion due to customization could
potentially have a negative impact on overall performance
if the custom translations are not optimized before they are
injected into the dynamic execution stream. In this paper, we
take advantage of several existing optimizations in the micro-
op engine in order to eliminate bottlenecks at the front-end
and potentially, throughout the pipeline.



MCU Update Handler Call

Prepare MCU (Headers+Data)
Headers Data

System Call to Inject MCU
iucode_tool --write-firmware 

Check 
Permissions

Verify/
Authenticate

Trigger MCU
mov  ecx,79h  ; MSR to write in ECX
xor  eax,eax  ; clear EAX
xor  ebx,ebx  ; clear EBX
mov  ax,cs    ; Segment of MCU
shl  eax,4    
mov  bx,off   ; Offset of MCU
add  eax,ebx  ; Linear Address of MCU in EAX
add  eax,48d  ; Offset of data within MCU 
xor  edx,edx  ; Zero in EDX 
WRMSR         ; MCU trigger

Verify Headers & Extract MCU Data

Auto-translate MCU Data

Inject MCU to Microcode Engine

MACRO-OP FUSION

MACRO TO MICRO TRANSLATION

MICRO-OP OPTIMIZATION

Ru
nt

im
e 

Sy
st

em
(S

W
)

Ke
rn

el
/D

riv
er

 (T
C

B)
Pr

oc
es

so
r

Figure 2: Auto-translation Procedure

Micro-op fusion. To take advantage of the micro-op fusion
optimization, we use load+op and load+br combinations as
much as we can in our custom micro-op sequences. By doing
so, we gain 1.6% in performance and eliminate bottlenecks
in the front end stages, and the micro-op cache.

Micro-loop Specialization. We attempt to create short
and tight loops that benefit from the improved micro-op
cache utilization, and take advantage of the loop cache when
present. The Intel optimization manual [71] recommends
loop fission [76] in case of longer loops. If the custom
decoder decides to employ loop fission on micro-loops, we
recommend that these loops don’t occur too close together in
the pipeline as they can potentially knock native instructions
in a 32-byte region out of the micro-op cache, causing severe
degradation in performance.

Register Tracking. Finally, customization may potentially
involve reusing micro-registers (e.g., as a loop induction
variable). By extending the stack pointer tracker to perform
full register tracking, more compact instances of custom
micro-op translations could be created.
E. Potential Applications

Later sections of this paper focus on particular applications
of context-sensitive decoding including (1) adding security
on-demand and (2) selectively moving vector computation on
and off the vector unit to minimize energy. However, other
potential applications (subject of future work) abound.

Programming Languages – To reduce costly time spent
on finding and fixing bugs, developers are increasingly

encouraged to employ software practices that ensure software
fault isolation, type safety, and formal verification [18], [19],
[77]. While most type checkers and proof assistants rely on
static verification, the dynamic nature of JavaScript and other
JITed code has made it increasingly hard to statically infer
and reason about types. Typed assembly languages [78] and
Google’s Portable Native Client [18] ensure deep sandboxing
and type safety of inherently native and/or JITed code, but
at a prohibitively high performance cost for many workloads.
With CSD, we can read metadata at the time of a load to
identify type, and pass flags between instructions to track
computation on registers, thereby increasing the coverage for
sensitive code regions where static verification is insufficient.

Debugging – Aside from type checking, breakpoints and
watchpoints are indispensible tools that software developers
use to find and fix evasive memory errors. Modern ISAs
with hardware debugging support reserve a small number
of monitor/debug registers to encode breakpoint/watchpoint
rules [20], [22]. However, most debuggers and runtime
analyses typically run out of debug registers and resort to
software breakpoints and watchpoints which are extremely
inefficient [21]. In translated ISAs, a context-sensitive de-
coder can microsequence a performance-efficient watchpoint
implementation since it has direct access to microarchitectural
structures such as the address translation unit.

Performance Counters – Modern processors implement a
variety of performance counters, but with several limitations.
Only a few can be used at once, and the actual counters typ-
ically change from generation to generation, often dependent
on where the designer had room for a counter and where
they did not. However, we can add many counters in the
decoder, with no limit to the number of counters active at
once, and providing compatibility across generations despite
different layouts and space availability.

Profiling – Modern systems typically rely on instrumenta-
tion to profile code. However, intrumentation alters the code,
potentially resulting in heisenbugs. That is, instruction cache,
data cache, and even memory interference behavior is altered
by the instrumentation. With CSD, we can add profiling with
no change whatsoever to code layout or data layout.

IV. CASE STUDY I:SIDE-CHANNEL DEFENSE

In this section, we demonstrate the security potential of
context-sensitive decoding. We first lay out our assumptions
and threat model, then describe the stealth-mode translation
feature of context-sensitive decoding. Finally, we leverage
this feature to secure commercial implementations of RSA
and AES against the exploitation of the two major data and
instruction cache side channel attacks.
A. Assumptions and Threat Model

Trusted Computing Base. We assume that the micro-op
engine – which includes both the legacy decode pipeline
and the micro-op cache – is tamper-proof and is a part
of the Trusted Computing Base (TCB) [79], [73]. We
also further extend the TCB to include all hardware or
software mechanisms that can potentially trigger context-
sensitive decoding. These include register tracking, dynamic



information flow tracking [7], hardware watchdog timers,
and anti-virus-driven stealth mode configuration (e.g., an
Intel/McAfee security solution). Moreover, we assume that
such hardware security mechanisms, including any microcode
that enables security, are formally verified [80]. Note that
we only assume that the trigger/injection mechanisms (e.g.,
watchdog timer, microcode update kernel module, context-
sensitive decoder) are a part of the TCB, but the instruction
stream itself need not be. Finally, since the API exposed to
software only consists of macro-ops, we continue to assume
that the translated micro-ops in the micro-op cache (both
native and custom-translated) can neither be read by software
nor be probed via hardware side-channels.

Attacker Environment. We assume an active attacker
who can effortlessly probe, flush, or evict a co-located
victim’s cache lines, but does not have direct access to the
contents in the cache. We also assume that the attacker has
the ability to make precise timing measurements and has
unlimited access to hardware performance counters. This
allows them to make inferences about the software algorithm
being run by the victim, by observing the micro-architectural
(cache) characteristics alone.

B. Stealth-Mode Translation
Cache-based side channel attacks typically involve probing

one or more cache lines of a co-located victim in order to
capture its memory access patterns that could potentially
reveal secret information. For example, an attacker who
intends to break a cryptographic algorithm could compute
one or more bits of a secret key by capturing access patterns
of key-dependent loads and branches. The goal of the stealth-
mode translation is to provide an illusion of a modified
architectural state by obfuscating the micro-architectural
characteristics alone. In this specific implementation, we
obfuscate a victim’s control path and/or access to sensitive
data structures in an attacker-oblivious way. In particular, we
use decoy micro-ops that load data into the caches that would
be touched on all data-dependent paths. These include all
cache blocks that contain T-tables of AES and the multiply
functions of RSA. While we intend stealth-mode to be a
security feature to be deployed by the chip manufacturer,
trusted software entities [73] with the right privileges can
achieve similar effects by leveraging the auto-translated
microcode update feature.

Figure 3 shows context-sensitive decoding with stealth-
mode translation in action. Stealth-mode translation is primar-
ily triggered by updates to register-tracked decoy address-
range registers, similar to the already existing Memory
Type Range Registers (MTRR) [1] in x86 that allow system
software to control cache policies for specific address ranges
(e.g., write-back vs write-through). The decoy address range
registers, on the other hand, allow anti-virus and other
hardware/software trusted entities to mark specific data and
instruction address ranges in a program’s address space
as sensitive. As soon as the stealth-mode translation is
triggered, these decoy address ranges are copied to the
context-sensitive decoder’s internal registers; after that, the

Decoy Intr. 
Range Reg.

Macro-op 
Dispatcher

 µop-Queue

De
co

de
rs

Tag 
Array

µF
us

ion
 U

nit

HW 
Watchdog

Register 
Tracking 

Unit

Stealth 
Mode 1:4

MSROM

Regular 
Decoders

DIFT

Antivirus

CT
X 

Decoy Data 
Range Reg.

Decoy
µOps

µop cache st   [dst],src        
 mov  t0,Range.Size     
top: 
 ld/subi t1,[t0+Range.Start],t0,CBS
 br_lt top     

Macro-op Steam

Figure 3: Context-Sensitive Decoding with stealth mode

MOV_M_R(reg_t src, reg_t dst){
 asm(
  "mov [dst],src     ;real store "
 );
 for (int i=Range.start; i<Range.End; i+=cache_blk_size){

asm (
   "mov ebx,[eax+Range.Start]     ;decoy load"
);

 }
} (a) Pseudocode
MOV_M_R(reg_t src, reg_t dst){
 mov [dst],src     ;real store 
 mov eax,Range.Size    ;initialize eax 
top: 
 mov ebx,[eax+Range.Start]  ;decoy load
 sub eax, cache_blk_size  ;point to next cache block
 jl top        ;iterate over all cache blocks
} (b) X86 Instructions
MOV_M_R(reg_t src, reg_t dst){
 st   [dst],src        ;real store 
 mov  t0,Range.Size    ;initialize t0 
top: 
 ld/subi t1,[t0+Range.Start],t0,cache_blk_size;fused ld,sub 
 br_lt top        ;iterate over all cache blocks
}

(c) Micro-ops
Figure 4: Translation of MOV instruction in stealth mode

macro-op dispatcher starts redirecting all loads and branches
within the PC range for custom translation.

CSD injects decoy micro-ops into all instructions that use
memory operands and/or attempt control transfer (i.e., all
instructions that get translated to load/store/branch micro-
ops) during stealth-mode translation. Figure 4, as an example,
shows stealth-mode translation of the MOV instruction for
cache-based side-channel prevention. In this example, CSD
injects a micro-loop into the micro-op stream. The micro-loop
effectively obfuscates the architectural state by loading all
sensitive cache blocks whose addresses have been specified
by a software agent (e.g., antivirus) in the MSRRs.

We implement two schemes of translation – one for a
software anti-virus-driven stealth-mode configuration where
the tainted program counter (PC) values are known a
priori with the help of binary analysis and configured in
specific MSRs, and one for architectures that implement
full information-flow tracking in hardware where the taint-
checking is performed dynamically. In both instances, the
decoy micro-ops execute only for tainted instructions –



for the DIFT-enhanced architectures, this decision is made
dynamically at run-time.

We do not need to load the decoy structures constantly,
since they will stay in the cache for a time, or until
the attacker removes them. Thus, stealth-mode translation
automatically turns itself off once all the address ranges in
the context-sensitive decoder’s internal copy of the decoy
address-range MSRs have been emptied out (all blocks
specified by the range registers are loaded) by the decoy
micro-ops. However, before turning itself off, the context-
sensitive decoder starts the hardware watchdog timer in order
to periodically trigger stealth-mode translation. It is important
to carefully configure the watchdog’s timeout period to a
value that is smaller than the attacker’s best possible probe
interval period, but large enough to minimize the performance
degradation caused by the decoy micro-ops now flowing
through the pipeline.

In the next section, we show how stealth-mode translation
can be used to secure the instruction and data caches by de-
feating both the PRIME+PROBE and FLUSH+RELOAD
variants of cache-based side-channel attacks. We demonstrate
these on two specific instances of known vulnerabilities, but
our scheme extends to any application where the secure-data-
dependent code and data access ranges can be identified.

C. Securing the Instruction Cache
Instruction cache-based attacks have been able to suc-

cessfully break prominent cryptographic algorithms, such as
RSA, by being able to capture their key-dependent instruction
access patterns. In this section, we show how RSA is
inherently vulnerable to the I-cache attack and describe how
stealth-mode translation can defeat the attack.

The RSA Cryptographic Algorithm. RSA is a popu-
lar public-key cryptographic algorithm that uses modular
exponentiation for encrypting messages. Most commercial
implementations of the RSA algorithm, including PGP and
the open-source version GnuPG, use the square-and-multiply
algorithm that considerably speeds up modular exponentia-
tion. The algorithm iterates over the binary representation of
the exponent in order to selectively perform exponentiation
using three major sub-operations: square, multiply, and
reduce. While square and reduce are performed in each
loop iteration, multiply is invoked only when the exponent
bit is 1, which invariably entails a key-dependent branch.

I-Cache Side-Channel Attack on RSA. The sub-
operations of the square-and-multiply algorithm are imple-
mented as fairly large functions that span multiple cache
blocks. This implies that the I-cache access patterns captured
by a co-located spy process could potentially reveal several
bits of the exponent. A PRIME+PROBE attack that exploits
this side channel [81] fills up the I-cache set for the multiply
operation in the prime phase, and probes for it after a carefully
chosen interval to check if the victim evicted its block.
A FLUSH+RELOAD attack on the other hand, leverages
shared libraries and/or page de-duplication in order to flush
the cache line that corresponds to the multiply routine, and
further reloads it after a carefully chosen probe interval – a

quick access indicates the victim has accessed the code and
brought it into a shared cache.

Effect of Stealth-Mode Translation. As a defense
mechanism against I-cache based side-channel attacks, we use
stealth-mode translation to periodically (potentially, at every
probe interval) inject decoy instruction-load micro-ops into
the pipeline. Stealth-mode can seamlessly and instantaneously
be enabled for RSA by configuring the instruction decoy
address range MSRs with the address-range of the multiply
functions. By periodically loading the right set of cache
blocks into the I-cache, stealth-mode successfully obfuscates
the instruction access pattern that is perceived by the attacker.
D. Securing the Data Cache

As with instruction cache-based attacks, attackers have also
exploited data-cache side channels to infer secret information
by observing a victim’s key-dependent data access patterns. In
this section, we describe a well-known data cache-based side
channel in OpenSSL’s implementation of the AES algorithm
and discuss the potential of stealth-mode translation to thwart
these attacks.

The AES Cryptographic Algorithm. AES Algorithm is
a substitution-permutation block cipher that performs several
rounds of simple substitution and permutation during encryp-
tion. Several software implementations including OpenSSL
employ lookup tables called T-tables in order to speed up
the substitution-permutation rounds, which then consist of
several simple table lookup and xor operations. The index
computation for the T-table lookup involves an xor operation
between the key bits and the plaintext bits, thereby entailing
a key-dependent load.

D-Cache Side-Channel Attack on AES. The OpenSSL
implementation of AES employs four 256-entry T-tables,
which amounts to sixty-four 64-byte cache blocks in the data
cache. A spy process that monitors the access patterns of
these blocks during encryption can significantly reduce the
possible key space, and potentially reconstruct the entire key,
by using a large number of carefully chosen plaintext [51]. As
with I-cache attacks, a PRIME+PROBE attack fills up the
D-cache sets for one or more of these T-table blocks in the
prime phase, and probes for them after a certain interval to
check if the victim made an access to any of the primed sets.
A FLUSH+RELOAD D-cache attack exploits de-duplication
in order to flush one or more of the T-table blocks, and reload
them after a carefully chosen probe interval.

Effect of Stealth-Mode Translation. Similar to the
use of stealth-mode translation to defend against I-cache
attacks, by configuring the data decoy address range MSRs
with the appropriate address range of the T-tables, we can
successfully obfuscate the key-dependent data access patterns.
Furthermore, by carefully choosing a watchdog timeout
period to enable periodic decoy load injection, we can also
defend against brute-force key extraction attacks [82].

E. Securing other Side-Channels.
Although the primary focus of this work is to defend

against cache-based side-channel attacks, we note that the
stealth-mode translation feature of CSD could be exploited



Macro-op 
Dispatcher

 µop-Queue
Decoders

Tag 
Array

µF
us

io
n 

Un
it

Unit Criticality 
Predictor/Power 

Manager Unit

Scalarizing 
Mode 

MSROM

Regular 
Decoders

CT
X 

Scalar
µOps

µop cache

Is SSE 
Instructnon 

×weight

History 
Register

HWeight> 
Activate- 
Threshold

HWeight< 
Deactivate- 
Threshold

Unit 
State

To M
acro-op 

Dispatcher

To the Unit

Macro-op 
Stream 

Figure 5: CSD with Selective Devectorization

in future to defend against other timing and physical attacks.
For example, the decoy micro-ops could alter the branch
predictor tables and BTB entries to confuse branch prediction
analysis attacks, or potentially introduce a random stream of
NOPs (and different types of NOPs) to skew timing analysis.
Furthermore, owing to its ability to microsequence instruc-
tions using the MSROM, it can add additional noise into
the sensed power by non-deterministically microsequencing
instructions that cause switching activity across different
microarchitectural structures.

V. CASE STUDY II: UNIT-LEVEL POWER GATING

In this section we present another use case of context-
sensitive decoding, selective devectorization for unit-level
power-gating. While similar in functionality to software-based
devectorization approaches proposed in prior work [4], [68],
[69], we eliminate binary translation costs and related cache
effects, add the ability to switch modes at a finer granularity,
allow cheaper and more effective monitoring, and provide
more direct control over power gating and ungating.

Unit-level power gating is one of our primary tools to
reduce leakage power by disconnecting the supply voltage of
an idle unit. However, upon encountering demand for that unit
it must connect back to the supply voltage. Powering a unit on
and off uses power and energy cost but also slows execution,
typically stalling until the unit is activated. We leverage
context-sensitive decoding to enable efficient and more
fine-grained power-gating of vector units. CSD alleviates
these shortcomings in two ways: 1) for infrequent vector
instructions, it avoids powering on the unit by translating
vector instruction to equivalent scalar micro-ops, and, 2) it
hides the power-on delay by continuing the execution of
instructions using scalar mode until the unit is ready.

Figure 5 shows our hardware support (beyond the decoder)
for dynamic devectorization. We employ nothing more than a
simple counter that tracks a window of instructions, counting
up one for simple vector instructions and more than one for
more complex vector instructions (higher micro-op count).

PADDB(xmm_t src,  xmm_t dst){
xmm_t masked_src, masked_dst, temp_res;
xmm_t Mask = 0x00000000000000ff;
for(int8_t i = 0; i < 16; i++){

masked_src = src & Mask;
masked_dst = dst & Mask;
temp_res   = masked_src + masked_dst;
temp_res   = temp_res & Mask;
dst    = dst | temp_res;
Mask   = Mask << 8;

}
} (a) Pseudocode

PADDB(xmm_t src,  xmm_t dst){
    .DEF M1 0x00FF00FF00FF00FF
    .DEF M2 0xFF00FF00FF00FF00
    ;LOW 64-bits , MASK M1
    andi t1, src_l, $M1 ;Mask 1st Op
    andi t2, dst_l, $M1 ;Mask 2nd Op
    add  t3, t1, t2  ;Add Masked Op 
    andi t3, t3, $M1 ;Mask output
    ;HIGH 64-bits, MASK M1
    andi t1, src_h, $M1 
    andi t2, dst_h, $M1
    add  t4, t1, t2
    andi t4, t4, $M1
    ;LOW 64-bits , MASK M2
    andi t1, src_l, $M2
    andi t2, dst_l, $M2
    add  dst_l, t1, t2
    andi dst_l, dst_l, $M2
    or   dst_l, dst_l, t3
    ;HIGH 64-bits, MASK M2
    andi t1, src_h, $M2
    andi t2, dst_h, $M2
    add  dst_h, t1, t2
    andi dst_h, dst_h, $M2
    or   dst_h, dst_h, t4
}

(b) Optimized micro-ops
Figure 6: Devectorization of add byte instruction

When it goes below a threshold, it turns on devectorization
and powers off the entire vector unit, and when it goes above
a (higher) threshold, it turns the vector unit back on. It also
includes a cycle counter to continue devectorization until the
vector unit is fully powered.

When devectorization is enabled, the microcode engine
translates the vector instructions to an equivalent set of
scalar micro-ops. As an example, Figure 6a shows the
pseudocode that devectorizes the SSE PADDB instruction
which performs integer addition on packed bytes. This code
is further compiled and optimized into a set of native x86
instructions by a runtime system which performs the actual
microcode update. Figure 6b shows the equivalent auto-
translated micro-op version of such an update. While it is
possible to use a simpler translation with a loop, we find
that it is more efficient to unroll the loop in this case. This is
because, by employing suitable masks, the computation itself
can be optimized in a way that allows us to just perform
four adds and accumulate the results. While this optimization
holds true for this particular example, the decision to use
micro-loops and other optimizations purely depends upon
the nature and purpose of the custom translation.

Power Modeling and Power Gating Overheads For
powering a unit on and off, power gating uses a header
transistor that connects or disconnects the power source of



Baseline Processor
Frequency 3.3 GHz I cache 32 KB, 8 way
Fetch width 4 fused uops D cache 32 KB, 8 way
Issue width 6 unfused uops ROB size 168 entries
INT/FP Regfile 160/144 regs IQ 54 entries
LQ/SQ size 64/36 entries Functional Int ALU(6), Mult(1),
Branch Predictor LTAGE Units FP ALU/Mult(2), SIMD(2)

Table I: Architecture detail for the baseline x86 core
the unit. A sleep signal is applied to the gate of the header
device to control its operation. Switching the unit off and
on comes at the cost of asserting and de-asserting the sleep
signal plus switching on and off the header device. These
costs are responsible for the non negligible timing and energy
overhead of power gating. We use Equation 1 from a model
proposed by Hu et. al. [83] to account for the energy overhead
of power gating.

EOverhead ≈ 2WH
Es

cyc

α
(1)

Where WH is the ratio of the area of the sleep transistor
to the area of the unit and Es

cyc/α is the switching energy of
the unit for one cycle when switching factor α = 1. We use
a conservative value of 0.20 for WH , as the literature uses an
estimated range of 0.05 to 0.20 [4], [83], [84], [85], and for
Es

cyc/α we use McPAT estimates [86]. Power gating cycles
should be made long enough to compensate for the EOverhead .
The break-even time is defined as the number of cycles a
unit should stay in power-gated state so that the aggregate
energy savings of power gating (Esaved) matches the energy
of switching the unit on then off (EOverhead). We model the
leakage current of the header transistor itself, using McPAT.
We use Laurenzano et. al.’s [4] estimate of 30 cycles for
powering on the VPU.

VI. METHODOLOGY

This section details the evaluation methods we use for our
two case study applications of context-sensitive decoding.
Since most of the complexity of both is hidden by the decoder,
most of the infrastructure, including simulation, is shared
between the two. However, because the techniques have very
different goals, we do evaluate them in different ways.
A. Performance Evaluation

We model the x86 pipeline using the gem5 [87] architec-
tural simulator, which already features micro-op translation.
We further extend the gem5 front-end to include a micro-
op cache and support micro-op fusion as described in the
Intel Architectures Optimization Reference Manual [71].
Our baseline processor is based on the Intel Sandybridge
microarchitecture [88], adapted to the instruction queue
model of gem5. Table I lists the capabilities of our baseline
processor in more detail.

To evaluate the performance of the stealth-mode translation
technique we describe in this paper, we need an application
that exhibits a cache-based side-channel vulnerability –
due to the context-sensitive nature of this technique, we
seldom deviate from native performance when not in use
and incur no overhead on unaffected code. Therefore, we
evaluate the performance of our technique on two commercial
implementations of cryptographic algorithms: OpenSSL’s
AES and GnuPG’s RSA. We also include two additional

security benchmarks from the MiBench suite [89]: Blowfish
and Rijndael cryptographic algorithms that are vulnerable
to data cache based side channel attacks. We do not use
PGP’s IDEA algorithm and the SHA algorithm available in
MiBench because we could not find any key-dependent loads
or branches that would require our stealth-mode translation
mechanism. Each of our included security applications can
be run in two modes (encrypt and decrypt) that each perform
different computations and therefore exhibit different perfor-
mance characteristics, giving us 8 performance datapoints.

We use DIFT as a trigger mechanism that detects key-
dependent loads and further enables stealth-mode translation.
While DIFT can be implemented via CSD, we want to
separate the micro-op expansion and related effects of
stealth-mode (the primary topic of this paper) by leveraging
a lightweight hardware implementation [7] which incurs
an extra 4-cycle L2-tag access latency. Finally, to enable
our antivirus-driven trigger mechanism, we set aside five
scratchpad registers in the context-sensitive decoder that
each contain the addresses of potentially tainted instructions.

To evaluate the selective devectorization mode, we use a
wide range of high and low ILP applications from the SPEC
CPU2006 suite. We model power using McPAT with a 32nm
technology node [86]. Finally, we use SimPoint [90] and
Pinplay [91] to select simulation regions.

B. Security Evaluation

To evaluate the effectiveness of our security defense,
we subject AES and RSA running on our architecture
to the FLUSH+RELOAD variant of cache-based side-
channel attacks, modeled after the AES T-Table attacks by
Gruss, et. al. [60]. As further demonstration, we try the
PRIME+PROBE attack on AES and RSA. Our attack mod-
els exploit the I-cache side-channel for RSA and the D-cache
side-channel for AES, demonstrating defense against both
side channels. Since we model our stealth-mode translation
on a cycle-accurate simulator, we allow our attack models to
benefit from precise counters and therefore do not require a
calibration phase to set thresholds that distinguish between a
hit and a miss, and subsequently determine probe intervals.

VII. RESULTS

In this section, we evaluate each of our instantiations of
CSD, starting first with our side-channel defense mechanism
and following that with selective devectorization.

A. Stealth Mode

Security Evaluation. Figure 7a shows the results of a
well-known PRIME+PROBE attack on AES [92]. The
attack repeatedly triggers encryptions with carefully chosen
plaintexts while probing 16 different addresses of the AES
T-tables. For each probe, only one plaintext has a 100% hit
rate (steep dips in the curve), revealing 4 bits of the key.
When the stealth-mode translation is not enabled, 64 bits
out of the 128 bits of the key get compromised in a matter
of 64000 attempts as shown in the figure. These bits are



0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE02468ACE

1st	Nibble 2nd	Nibble 3rd	Nibble 4th	Nibble 5th	Nibble 6th	Nibble 7th	Nibble 8th	Nibble 9th	Nibble 10th	Nibble

Pr
ob
e	
hi
t	R

at
e

Native	Mode Stealth	Mode

(a) PRIME+PROBE on AES

0
400
800
1200
1600
2000

0 16 32 48 64 80 96 112 128

Ac
ce
ss
	Ti
m
e	(
Cy
cl
es
)

Probe	Cycle	
Native	Mode Stealth	Mode

(b) FLUSH+RELOAD on RSA
Figure 7: Effect of the cache attacks on AES and RSA with stealth-mode translation enabled.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%

No	
Opt

Opt No	
Opt

Opt No	
Opt

Opt No	
Opt

Opt No	
Opt

Opt No	
Opt

Opt No	
Opt

Opt No	
Opt

Opt No	
Opt

Opt

AES	
Encryption

AES	
Decryption

GPG	Sign GPG	Verify Rijandael	
Encryption

Rijandael	
Decyryption

Blowfish	
Encryption

Blowfish	
Decryption

Average

No
rm

al
ize

d	
Ex
ec
ut
io
n	
Ti
m
e

Native	Mode Stealth	Mode

Figure 8: The execution time impact of context-sensitive
decoding when implementing secure cache obfuscation nor-
malized to insecure execution mode. The watchdog timer is
set so that secure mode is re-entered every 500 microseconds.

sufficient enough to reverse-engineer the rest of key by well-
established cryptanalysis techniques. However, when stealth-
mode translation is enabled, the attacker-perceived data access
patterns are completely obfuscated and always result in a
hit for every probe, almost mimicking the behavior of a
constant-time defense [51].

Figure 7b shows the results of a FLUSH+RELOAD
attack on the RSA algorithm [53]. In the absence of stealth-
mode translation, the attacker can almost always detect
when a multiply function has been invoked by measuring
hits and misses (shown as dips and spikes in the figure)
to the corresponding reloaded cache line. However, when
stealth-mode translation is in effect, the attacker-perceived
instruction access pattern is completely obfuscated resulting
in a perceived I-cache hit at the end of every probe interval.
The PRIME+PROBE attack on RSA (not shown) is also
defeated, recording a miss on the attacker end after every
probe interval.

Performance The potential performance overheads of
CSD include micro-op expansion and related side effects
(micro-op queue pressure, micro-op cache pressure) and
possible cache effects due to increased cache pressure from
decoy loads. Careful construction of the secure-mode micro-
op translation allow us to minimize many of the side effects
of micro-op expansion.

Figure 8 compares the execution time of our pipeline
without any optimization (NoOpt) and with both micro-op
cache and micro-op fusion enabled (Opt). In these results, we
see performance loss consistently below 10% and averaging
5.6% when secure mode is enabled. This is to be compared
with the current state of the art obfuscation techniques,
which rely on the compiler (and consequently don’t enjoy a
hardware DIFT), that see performance expansion on the order
of 20X [26] for applications with large memory footprints.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%

AES	
Encryption

AES	
Decryption

GPG	Sign GPG	Verify Rijandael	
Encryption

Rijandael	
Decyryption

Blowfish	
Encryption

Blowfish	
Decryption

Average

N
or
m
al
ize

d	N
um

be
r	o
f	M

icr
o-
op
s

Native	Mode Stealth	Mode

Figure 9: Micro-op expansion due to CSD.

To break down the performance overhead of the context-
sensitive decoding, we first study micro-op expansion relative
to unaltered execution. As shown in figure 9, context-sensitive
decoding causes a micro-op expansion of 8.0% on average.
Comparing these results together with Figure 8 seems to
indicate that the primary cost of context-sensitive decoding is
in fact the micro-op expansion. This is somewhat surprising,
because we expect additional overheads from the higher
incidence of loads and greater memory activity.

We investigate this further with several experiments. First,
we measure performance in cycles/micro-op, and find that
in fact this figure does not increase (and in some cases
decreases), despite the fact that the percentage of load micro-
ops has increased. Second, we see in Figure 10 that the
number of cache misses per kilo instruction (MPKI) stays
about the same on average. This indicates the vast majority of
additional injected loads are hits. In yet another experiment
where we discounted the cost of micro-op expansion, we
saw an overall performance increase on average – this was
due to a prefetching effect from the added micro-ops. Thus,
the cache prefetching effect of the decoy loads is actually
muting some of the performance cost of micro-op expansion.

Another negative side effect of context-sensitive decoding
is on the micro-op cache. Because we introduce translations
not allowed in the micro-op cache, or in other cases expand
loops so they no longer fit, we do lose some of the
effectiveness of that cache. However, that effect is small,
especially when modeled with micro-op fusion enabled.
Without fusion, the micro-op cache hit rate, on average,
drops from 44% to 39% when we introduce CSD, but in
the presence of micro-op fusion (which shortens some of
the code sequences we expanded), it is much more stable
dropping only from 43% to 42% with CSD-based stealth
mode enabled.

In all above experiments, the watchdog timer is set to 1000
cycles (500 microseconds), so the decoy loads are deployed
at the first decoded tainted load or branch encountered,



0
0.3
0.6
0.9
1.2
1.5
1.8

AES	
Encryption

AES	
Decryption

GPG	Sign GPG	Verify Rijandael	
Encryption

Rijandael	
Decyryption

Blowfish	
Encryption

Blowfish	
Decryption

Average

Ca
ch
e	
M
is
se
s	P

er
	K
ilo
	

In
st
ru
ct
io
n	
(M

PK
I)

Native	Mode Stealth	Mode

Figure 10: Number of cache misses without and with CSD.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

St
ea
lth

	M
od
e	
No

rm
al
ize

d	E
xe
cu
tio

n	
Ti
m
e

Wathchdog	Timer	Period	 (Cycles)

AES	Encryption
AES	Decryption
GPG	Sign
GPG	Verify
Rijandael	Encryption
Rijandael	Decyryption
Blowfish	Encryption
Blowfish	Decryption
Average

Figure 11: Effect of CSD timer on execution time.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

Po
w
er
	G
at
in
g

CS
D

bwaves milc namd astar gcc gobmk Gems omnetpp sjeng gamess Average

N
or
m
al
iz
ed
	E
ne
rg
y

Wake	Up Leakage Dynamic

Figure 12: Total energy consumption of CSD’s devectorizing
mode normalized to that of power-gating

then decoding returns to normal mode until the timer fires
again. While re-injecting decoy micro-ops every 1000 cycles
provides almost perfect obfuscation against these cache-based
side-channel attacks, based on system characteristic (e.g.,
cache miss/hit delays) and targeted attacks one can tune
this parameter to increase the performance of the defense.
Figure 11 shows the normalized execution time of our
defense, sweeping the watchdog timer from 1000 to 10000
cycles. The decrease in execution time is caused by fewer
extra micro ops and fewer micro-op cache conflicts.

Overall, we find that obfuscation of secure-data dependent
microarchitecture state can be enabled with context-sensitive
decoding with almost no performance cost, particularly in
comparison with prior techniques.
B. Selective Devectorization

Figure 12 shows the breakdown of energy for regular
decoding with (1) conventional power gating and (2) our
devectorizing mode using context sensitive decoding. Energy
numbers are normalized to the total energy of conventional
power gating. On average, dynamic devectorization results in
a 12.9% improvement of total energy consumption. This is
despite the fact that several of our SPEC benchmarks make
little use of vectorization.

Figure 13 compares the execution time of three different
VPU power-gating polices: (1) Always execute on the
vector units (Always On), (2) Context Sensitive Decoding
which scalarizes the instructions based on the unit criticality

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%
130%
140%
150%
160%
170%
180%

bwaves milc namd astar gcc gobmk Gemsomnetpp sjeng gamessAverage

N
or
m
al
iz
ed
	E
xe
cu
ti
on

	T
im

e

Always	On CSD Power	Gating Always	Off

Figure 13: Execution time for different power gating policies,
normalized to always on policy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%
120%
130%
140%

No
rm

al
ize

d	
nu
m
be
r	
of
	m
icr
o	
op
s

Always	On Context	Sensitive Always	Off

Figure 14: Micro-op expansion due to context sensitive
decoding normalized to native mode

predictor’s decisions (CSD), (3) Conventional power gating
(Power Gating), and (4) Always translate instructions to
scalar micro-ops to execute on scalar units (Always Off). The
always-devectorize policy and power gating both incur con-
siderable performance overheads (12% and 5%, on average
respectively) while context-sensitive decoding reduces this to
only 1.6% overhead. In general, it keeps performance close
to full vectorization even though the vector units are turned
off much of the time. The only exception is namd, where we
are much faster than full devectorization and conventional
power gating, but still incur a high cost.

Figure 14 shows the number of dynamic micro-ops for
the three VPU power-gating polices. Here we see that
performance scales with micro-op expansion, the primary
performance cost of CSD dynamic devectorization.

Figure 15 depicts the percentage of time that the VPU is
kept power-gated for each benchmark. On average, context
sensitive decoding can keep the VPU power-gated more than
70% of the execution time. For benchmarks astar, gcc, gobmk,
and sjeng with low (but not nonexistent) vector activity, we
are able to keep the vector unit turned off just about all the
time, not having to turn it on for occasional outliers.

Figure 16 shows the breakdown of the SSE instructions
in each benchmark. We categorize instructions into three
categories: 1) instructions that are executed on the VPU
(Powered On), 2) instructions that are devectorized and
executed on scalar units because the VPU was in the process
of powering on (Powering On), and 3) instructions that are
executed on scalar units because the VPU was in power-
gated state (Power-Gated). We find that bwaves and milc
are frequently forced to execute scalar instructions while
waiting for the vector unit to power on. They are still able
to slightly come out ahead in energy, though, due to the



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

bw
aves

m
ilc

nam
d

astar

gcc

gobm
k

Gem
s

om
netpp

sjeng

gam
ess

Average

Pe
rc
en
ta
ge
	o
f	t
im

e	
sp
en
t	i
n	
po

w
er
	g
at
ed

Off	Cycles On	Cycles

Figure 15: Percentage of time that CSD power gates VPUs.

00E+00
05E+06
10E+06
15E+06
20E+06
25E+06
30E+06
35E+06
40E+06
45E+06
50E+06

N
um

be
r	o

f	S
SE
	In
st
ru
ct
io
ns

Powered	On Powering	On Power-Gated

Figure 16: Breakdown of vector activity
performance advantage of not having to stall to wait for the
VPU to turn on. Namd executes the largest number of vector
instructions in gated mode, and is in fact gated 20% of the
time despite having a large amount of vector activity. This
implies that the threshold that performed overall was too
aggressive for namd, and a more dynamic threshold or usage
predictor would work better. Omnetpp, on the other hand,
has a reasonable number of scalar operations but executes
nearly all of them with the vector unit disabled, resulting in a
significant gain in energy. And gamess is able to judiciously
enable power gating, as it is gated nearly half the time, yet
only about 20% of vector instructions are affected.

Overall, for CSD-enabled selective devectorization, we
find that we are able to power gate the vector unit for longer,
unbroken periods, resulting in good energy savings with a
small performance cost.

VIII. CONCLUSION
The paper presents context-sensitive decoding, which

enables the decoder to dynamically alter the decoding of
programmer-visible ISA instructions. This allows the system
to change the functionality of the software without program-
mer or compiler intervention. We use the technique for stealth
mode translation, where the decoder injects instructions which
completely obfuscate the effect of secure-data dependent
branches and data accesses, defending against multiple
variants of cache-based side channel attacks at just 5%
performance degradation. This removes the microarchitectural
footprint of the secure code from an attacker. Additionally
we enable selective devectorization via CSD, saving 12.9%
in energy while simultaneously achieving a speedup of 3.4%
over conventional power gating.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their helpful insights. This research was supported in

part by NSF Grant CNS-1652925 and DARPA under the
agreement number HR0011-18-C-0020.

REFERENCES

[1] Intel 64 and IA-32 Architectures Software Developer’s Manual
- Volume 3B, Intel Corporation, August 2011.

[2] ARM Architecture Reference Manual, ARM Limited.
[3] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars, “Protean

code: Achieving near-free online code transformations for
warehouse scale computers,” in Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on.
IEEE, 2014, pp. 558–570.

[4] M. A. Laurenzano, Y. Zhang, J. Chen, L. Tang, and J. Mars,
“Powerchop: Identifying and managing non-critical units in
hybrid processor architectures,” in Proceedings of the 43rd
International Symposium on Computer Architecture, 2016.

[5] A. Bhattacharjee and M. Martonosi, “Thread criticality pre-
dictors for dynamic performance, power, and resource man-
agement in chip multiprocessors,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture,
2009.

[6] E. Witchel, J. Cates, and K. Asanović, Mondrian memory
protection. ACM, 2002.

[7] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure
program execution via dynamic information flow tracking,” in
Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 2004.

[8] J. Newsome and D. X. Song, “Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software,” in Proceedings of the 12th
Annual Network and Distributed System Security Symposium,
2005.

[9] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic,
“Flexitaint: A programmable accelerator for dynamic taint
propagation,” in High Performance Computer Architecture,
2008. HPCA 2008. IEEE 14th International Symposium on,
2008.

[10] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu,
and R. Kastner, “Theoretical fundamentals of gate level
information flow tracking,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems.

[11] S. Bhatkar and R. Sekar, “Data space randomization,” in
Detection of Intrusions and Malware, and Vulnerability
Assessment, 2008.

[12] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro,
“Data randomization,” Technical Report MSR-TR-2008-120,
Microsoft Research, Tech. Rep., 2008.

[13] C. Rohlf and Y. Ivnitskiy, “Attacking clientside JIT compilers,”
Black Hat, USA, 2011.

[14] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner,
“Leveraging gate-level properties to identify hardware timing
channels,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems.

[15] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu,
and R. Kastner, “On the complexity of generating gate
level information flow tracking logic,” IEEE Transactions
on Information Forensics and Security, 2012.

[16] T. H. Heil and J. E. Smith, “Concurrent garbage collection
using hardware-assisted profiling,” in Proceedings of the 2Nd
International Symposium on Memory Management, 2000.

[17] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun, “Using
hardware features for increased debugging transparency,” in
Proceedings of the 2015 IEEE Symposium on Security and
Privacy, 2015.

[18] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A
sandbox for portable, untrusted x86 native code,” in 2009 30th
IEEE Symposium on Security and Privacy. IEEE, 2009.



[19] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan,
“Rocksalt: better, faster, stronger sfi for the x86,” in ACM
SIGPLAN Notices, 2012.

[20] R. Wahbe, “Efficient data breakpoints,” in ACM SIGPLAN
Notices, 1992.

[21] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin,
“Demand-driven software race detection using hardware perfor-
mance counters,” in ACM SIGARCH Computer Architecture
News, 2011.

[22] J. L. Greathouse, H. Xin, Y. Luo, and T. Austin, “A case
for unlimited watchpoints,” in ACM SIGARCH Computer
Architecture News, 2012.

[23] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and
prediction,” in ACM SIGARCH Computer Architecture News,
2003.

[24] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat,
D. Tullsen, and R. Gupta, “Reliability-aware data placement
for heterogeneous memory architecture,” in High Performance
Computer Architecture (HPCA), 2018 IEEE International
Symposium on, 2018.

[25] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E.
Suh, “Secdcp: Secure dynamic cache partitioning for efficient
timing channel protection,” in Proceedings of the 53rd Annual
Design Automation Conference, 2016.

[26] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-
channels through obfuscated execution.” in USENIX Security
Symposium, 2015.

[27] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and
E. Shi, “Ghostrider: A hardware-software system for memory
trace oblivious computation,” ACM SIGARCH Computer
Architecture News, 2015.

[28] I. Kim and M. H. Lipasti, “Implementing optimizations at
decode time,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture, 2002.

[29] ——, “Macro-op scheduling: Relaxing scheduling loop con-
straints,” in Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003.

[30] S. Hu, I. Kim, M. H. Lipasti, and J. E. Smith, “An approach
for implementing efficient superscalar cisc processors,” in
The Twelfth International Symposium on High-Performance
Computer Architecture, 2006., 2006.

[31] D. L. Howard and M. H. Lipasti, “The effect of program
optimization on trace cache efficiency,” in Proceedings of the
1999 International Conference on Parallel Architectures and
Compilation Techniques, 1999.

[32] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace
processors,” in Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, 1997.

[33] R. Rajwar, M. Dixon, and R. Singhal, “Specialized evolution
of the general purpose cpu.” in CIDR, 2015.

[34] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution
migration in a heterogeneous-isa chip multiprocessor,” in
Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2012.

[35] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design
of a heterogeneous-isa chip multiprocessor,” in Proceedings of
the International Symposium on Computer Architecture, 2014.

[36] A. Venkat, S. Shamasunder, H. Shacham, and D. M. Tullsen,
“Hipstr: Heterogeneous-isa program state relocation,” in Pro-
ceedings of the International Symposium on Architectural
Support for Programming Languages and Operating Systems,
2016.

[37] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski,
A. Ravichandran, C. Kendir, A. Murray, and B. Ravindran,
“Popcorn: Bridging the Programmability Gap in heterogeneous-
ISA Platforms,” in Proceedings of the 10th European Confer-
ence on Computer Systems, Apr. 2015.

[38] A. Branković, K. Stavrou, E. Gibert, and A. González,

“Performance analysis and predictability of the software layer
in dynamic binary translators/optimizers,” in Proceedings of
the ACM International Conference on Computing Frontiers,
2013.

[39] S. Hu and J. E. Smith, “Using dynamic binary translation
to fuse dependent instructions,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, 2004.

[40] A. Venkat, A. Krishnaswamy, K. Yamada, and R. Palanivel,
“Binary Translation driven Program State Relocation,” in
United States Patent Grant US009135435B2, 2015.

[41] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye, “Dy-
namic binary translation and optimization,” IEEE Transactions
on Computers, 2001.

[42] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson,
T. Kistler, A. Klaiber, and J. Mattson, “The Transmeta Code
Morphing Software: using speculation, recovery, and adaptive
retranslation to address real-life challenges,” in Proceedings
of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization,
2003.

[43] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman,
“Denver: Nvidia’s first 64-bit ARM processor,” IEEE Micro,
2015.

[44] N. Clark, H. Zhong, and S. Mahlke, “Processor acceleration
through automated instruction set customization,” in Proceed-
ings of the 36th annual IEEE/ACM International Symposium
on Microarchitecture, 2003.

[45] M. L. Corliss, E. C. Lewis, and A. Roth, “Dise: A pro-
grammable macro engine for customizing applications,” in
Computer Architecture, 2003. Proceedings. 30th Annual Inter-
national Symposium on, 2003.

[46] ——, “Low-overhead interactive debugging via dynamic
instrumentation with dise,” in 11th International Symposium
on High-Performance Computer Architecture, 2005.

[47] ——, “Using dise to protect return addresses from attack,”
SIGARCH Comput. Archit. News, Mar. 2005.

[48] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: Exploring information leakage in
third-party compute clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, 2009.

[49] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner,
F. T. Chong, and T. Sherwood, “Surfnoc: A low latency and
provably non-interfering approach to secure networks-on-chip,”
in Proceedings of the 40th Annual International Symposium
on Computer Architecture, 2013.

[50] O. Acıiçmez, W. Schindler, and Ç. K. Koç, “Cache based
remote timing attack on the aes,” in Cryptographers Track at
the RSA Conference, 2007.

[51] D. J. Bernstein, “Cache-timing attacks on aes,” Tech. Rep.,
2005.

[52] K. Mowery, S. Keelveedhi, and H. Shacham, “Are aes x86
cache timing attacks still feasible?” in Proceedings of the
2012 ACM Workshop on Cloud computing security workshop,
2012.

[53] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution,
low noise, l3 cache side-channel attack.” in USENIX Security,
2014.

[54] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing
attack on openssl constant time rsa,” in International Con-
ference on Cryptographic Hardware and Embedded Systems,
2016.

[55] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret
keys via branch prediction,” in Cryptographers Track at the
RSA Conference, 2007.

[56] E. Biham and A. Shamir, “Differential fault analysis of
secret key cryptosystems,” in Annual International Cryptology
Conference, 1997.

[57] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic



analysis: Concrete results,” in International Workshop on
Cryptographic Hardware and Embedded Systems, 2001.

[58] D. Genkin, A. Shamir, and E. Tromer, “Acoustic cryptanalysis,”
Journal of Cryptology, 2016.

[59] J. J. Hoch and A. Shamir, “Fault analysis of stream ciphers,”
in International Workshop on Cryptographic Hardware and
Embedded Systems, 2004.

[60] M. C. W. K. Gruss, Daniel and S. Mangard, Flush+Flush: A
Fast and Stealthy Cache Attack, 2016.

[61] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache attacks in
javascript and their implications,” in Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications
Security, 2015.

[62] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic soft-
ware diversity.” in NDSS, 2015.

[63] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram,
“A case for guarded power gating for multi-core processors,” in
Proceedings of the 2011 IEEE 17th International Symposium
on High Performance Computer Architecture, 2011.

[64] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and
E. G. Friedman, “Managing static leakage energy in micro-
processor functional units,” in Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture,
2002.

[65] H. Farrokhbakht, M. Taram, B. Khaleghi, and S. Hessabi,
“Toot: an efficient and scalable power-gating method for noc
routers,” in 2016 Tenth IEEE/ACM International Symposium
on Networks-on-Chip (NOCS), 2016.

[66] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and
C. Kozyrakis, “Power management of datacenter workloads
using per-core power gating,” IEEE Computer Architecture
Letters, 2009.

[67] T. Chen, A. Rucker, and G. E. Suh, “Execution time prediction
for energy-efficient hardware accelerators,” in Proceedings of
the 48th International Symposium on Microarchitecture, 2015.

[68] R. Kumar, A. Martı́nez, and A. González, “Efficient power
gating of simd accelerators through dynamic selective devec-
torization in an hw/sw codesigned environment,” ACM Trans.
Archit. Code Optim., 2014.

[69] ——, “Efficient power gating of simd accelerators through
dynamic selective devectorization in an hw/sw codesigned
environment,” ACM Trans. Archit. Code Optim., 2014.

[70] A. Fog, “Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for intel, amd
and via cpus,” http://www.agner.org/optimize/instruction
tables.pdf.

[71] Intel Corporation, Intel R© 64 and IA-32 Architectures Opti-
mization Reference Manual, March 2009.

[72] G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-
chip secure processor,” Information Security Technical Report,
2005.

[73] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“Aegis: Architecture for tamper-evident and tamper-resistant
processing,” in Proceedings of the 17th Annual International
Conference on Supercomputing, 2003.

[74] ARM, “Arm security technology - building a secure system
using trustzone technology,” 2009.

[75] “Debian microcode update,” https://wiki.debian.org/Microcode,
2017.

[76] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving data
locality with loop transformations,” ACM Trans. Program.
Lang. Syst., Jul. 1996.

[77] A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and
S. Lerner, “Verifying gpu kernels by test amplification,” in
ACM SIGPLAN Notices, vol. 47, no. 6. ACM, 2012, pp.
383–394.

[78] K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,

D. Walker, S. Weirich, and S. Zdancewic, “Talx86: A realistic
typed assembly language,” in 1999 ACM SIGPLAN Workshop
on Compiler Support for System Software Atlanta, GA, USA,
1999.

[79] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas,
“Design and implementation of the aegis single-chip secure
processor using physical random functions,” in Proceedings
of the 32Nd Annual International Symposium on Computer
Architecture, 2005.

[80] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E.
Suh, “Verification of a practical hardware security architecture
through static information flow analysis,” in Proceedings of
the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems,
2017.

[81] O. Aciiçmez, “Yet another microarchitectural attack:: exploit-
ing i-cache,” in Proceedings of the 2007 ACM workshop on
Computer security architecture, 2007.

[82] D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and
Countermeasures: The Case of AES, 2006.

[83] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Ja-
cobson, and P. Bose, “Microarchitectural techniques for
power gating of execution units,” in Proceedings of the
2004 International Symposium on Low Power Electronics
and Design, 2004.

[84] C. Long and L. He, “Distributed sleep transistors network for
power reduction,” in Proceedings 2003. Design Automation
Conference (IEEE Cat. No.03CH37451), 2003.

[85] H. Jiang, M. Marek-Sadowska, and S. R. Nassif, “Benefits
and costs of power-gating technique,” in 2005 International
Conference on Computer Design, 2005, pp. 559–566.

[86] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2009.

[87] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling
Networked Systems,” Micro, IEEE, 2006.

[88] “2nd Generation Intel Core vPro Processor
Family,” Intel, Tech. Rep., 2008, available at http:
//www.intel.com/content/dam/doc/white-paper/performance-
2nd-generation-core-vpro-family-paper.pdf. [Online].
Available: http://www.intel.com/content/dam/doc/white-paper/
performance-2nd-generation-core-vpro-family-paper.pdf

[89] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “Mibench: A free, commercially
representative embedded benchmark suite,” in Proceedings
of the 2001 IEEE International Workshop on Workload
Characterization, 2001.

[90] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically characterizing large scale program behavior,”
in Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, 2002.

[91] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie,
“Pinplay: A framework for deterministic replay and repro-
ducible analysis of parallel programs,” in Proceedings of the
8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2010.

[92] O. D. A. Tromer, Eran and A. Shamir, “Efficient cache attacks
on aes, and countermeasures,” Journal of Cryptology, 2010.

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://wiki.debian.org/Microcode
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf

