
492168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJuly/August 2022

Mitigating Speculative
Execution Attacks
via Context-Sensitive
Fencing

 The tension between security and per-
formance has always been an important theme.
However, Spectre and related attacks [1], [2] have
exposed new dimensions of that tension, exploiting
some of the most fundamental architectural perfor-
mance features. Mitigating most variants of Spectre,
as a result, potentially requires highly intrusive
changes to the existing out-of-order processor design,
severely limiting performance. Although Intel has
announced microcode updates to mitigate certain
variants of the attack, a majority of the high-impact
vulnerabilities still largely rely on software patching
[3]. Software mitigations take advantage of fences
that mute specific effects of speculative execution

by constraining the order
of certain memory oper-
ations, or in some cases
by completely serializing
a portion of the dynamic
instruction stream. Lib-
eral fence insertion (e.g.,

at every load) can mitigate the attacks, but doing so
severely hurts the performance; however, deploying
fences more strategically at appropriate locations
in the code requires extensive patching, resulting
in significant engineering effort and long delays to
deployment. We need architectures that can more
seamlessly and quickly react to such attacks via
unobtrusive field updates.

This work proposes context-sensitive fencing
(CSF), a novel microcode-level defense against
Spectre. The key components of the defense strategy
include: 1) a microcode customization mechanism
that allows processors to surgically insert fences into
the dynamic instruction stream to mitigate undesir-
able side effects of speculative execution and 2) a
decoder-level information flow tracking framework
that identifies potentially unsafe execution patterns
to trigger microcode customization.

Digital Object Identifier 10.1109/MDAT.2022.3152633

Date of publication: 17 February 2022; date of current version:

22 June 2022.

Mohammadkazem Taram
Department of Computer Science and Engineering,
University of California at San Diego,
La Jolla, CA 92093 USA

Ashish Venkat
Department of Computer Science,
University of Virginia,
Charlottesville, VA 22904 USA

Editor’s notes:
This article proposes a microcode-level defense against speculative
execution attacks.

—Jeyavijayan “JV” Rajendran, Texas A&M University

Dean Tullsen
Department of Computer Science and Engineering,
University of California at San Diego,
La Jolla, CA 92093 USA

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

50 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

This defense can operate on legacy binaries,
including completely untrusted code, without the
need for recompilation or binary translation. Among
the significant advantages of this approach is that a
global solution to a new speculation-based attack
can be deployed quickly via microcode update,
without the need to wait for every software vendor
to deploy a solution and update their products.

This work analyzes a significantly expanded suite
of fences, considering various possible new enforce-
ment stages and enforcement strategies. We intro-
duce a new fence that prevents speculative updates to
cache state with minimal interference in the dynamic
scheduling of instructions, considering both a ver-
sion that minimizes disruption of dynamically sched-
uled instruction execution in a nonshared-memory
scenario, and a slightly more constrained version
that respects total store order (TSO) semantics for
shared-memory execution. To mitigate a larger suite
of Spectre variants, we also introduce new fences that
protect against attacks that exploit port contention [4]
and memory disambiguation prediction [5].

CSF, a novel decoder-level information flow
tracking-based detection mechanism, has the ability
to automatically and dynamically identify the points
in the program that require a fence. Information-flow
tracking at the front-end of the pipeline is a new
challenge, as all operations at that point are specula-
tive. We develop a solution that addresses both the
resulting overtainting and undertainting issues.

Architectural overview
This section describes the overall architec-

tural approach of our defense mechanism—CSF.
Figure 1 shows the expected implementation. Key
to our approach is an ×86 microcode engine that

enables context-sensitive decoding (CSD) [6], allow-
ing it to optionally translate a native ×86 instruction
into a customizable, alternate set of micro-ops. CSF
leverages this capability to dynamically perform
conservative insertion of fences at potentially vulner-
able Spectre code targets. To this end, we introduce
new custom micro-op flows and new configuration
mechanisms that trigger such micro-op flows.

The CSD-enabled microcode engine is provi-
sioned with fine-grained reconfiguration capabil-
ities via a set of model-specific registers (MSRs)
that can control the frequency, type, and enforce-
ment criteria of fences inserted into the dynamic
instruction stream. Such a fine-grained runtime
reconfiguration capability is especially important
to this work because speculation fences have a
high-performance cost. This approach allows us to
surgically insert fences that impose varying degrees
of restrictions on speculative execution, depending
upon the runtime conditions, current level of threat,
and the nature of the code being executed.

Moreover, CSF benefits from a novel decod-
er-level information flow tracking engine [7] that
has the ability to identify instructions with untrusted
inputs that can potentially form a Spectre gadget and
can then trigger alternate micro-op flows that insert
speculation fences. Being in the decoder, and thus
inherently speculative, decoder-level information
flow tracker (DLIFT) relies on mistaint detection
and recovery hardware implemented in the exe-
cute stage to avoid overtainting and undertainting
scenarios. Finally, CSF also includes hardware and
microcode-level mechanisms to achieve branch
predictor state isolation across protection domains
to mitigate the variant-2 and variant-4 attacks. Both
these enhancements are described in detail in [7].

Figure 1. Architectural overview.

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

51July/August 2022

Design and implementation
This section describes, in greater detail, the archi-

tectural techniques and building blocks that together
constitute the proposed defense strategy—CSF.

Microcode customization
Speculation fences are a processor’s primary

mechanism to override speculative execution. For
Spectre variant-1, CSF works with CSD by providing
alternate decodings of all load instructions, with
the alternate decoding always including a fence
micro-op that appears before the load micro-op.
The alternate decoding will then be triggered or
not based on runtime conditions. The first consid-
eration, then, is what fence instruction to incorpo-
rate. Most processors already provide a variety of
fences and serializing instructions. However, none
of these were designed for security. Several were
designed for synchronization, and thus with very
different priorities. Others are just unintentional
side effects of other operations, most of which are
expected to be rare, so the serialization aspects
are typically implemented with little attention to
performance. In this study, we find ample oppor-
tunity to significantly shift and reduce the afore-
mentioned tension between performance and
security—identifying and eliminating several key
dimensions of these fences that restrict perfor-
mance with no actual benefit for security.

The following sections look at fence options,
from existing alternatives to design options for novel,
targeted fences.

•	 Serializing instructions and memory fences: Seri-
alizing instructions are the strictest among all
speculation fences and completely override spec-
ulative execution. Upon decoding a serializing
instruction, the processor stalls fetching any sub-
sequent instruction until all instructions preced-
ing the serializing instruction retire. Due to the
high pipeline depth and issue width of modern
out-of-order superscalars, the usage of serializing
instructions could result in long delays and con-
siderable throughput loss. Memory fences, on
the other hand, enforce a memory serialization
point in the program instruction stream. More
specifically, these fences ensure that memory
operations that appear after the fence are stalled
until all prior memory requests (and the fence)
complete execution.

		 Intel’s SFENCE instruction does not allow
stores to pass through it, but does not affect
loads. The MFENCE instruction restricts all mem-
ory operations from passing through it. LFENCE,
unlike SFENCE and MFENCE that are memory
ordering operations, is actually a serializing oper-
ation. In particular, LFENCE does not stop the
processor from fetching and decoding instruc-
tions that appear after the LFENCE, but it restricts
the dispatch of such instructions until the instruc-
tions preceding the LFENCE complete execu-
tion. Since LFENCE serializes execution and yet
makes some progress in the frontend, it has been
recommended by Intel as a low-overhead fence
that can be inserted at vulnerable points in exe-
cution to defend against Spectre [3].

•	 Fence enforcement policies: Since none of the
existing instructions that provide fence support
were actually created for the purpose we (or the
whole industry) need for Spectre mitigation, it
is useful to consider the landscape of existing
fences and potential fence implementations. We
examine several possible properties of fences in
this section.

Early versus late enforcement
We first categorize fences into early-enforced and

late-enforced fences, based on the pipeline stage at
which they are enforced. In particular, we refer to
any serializing instruction, such as an LFENCE, that
is enforced at the instruction queue or earlier in the
pipeline as early-enforced. If the fence is enforced
at a later stage such as the reservation station, the
load/store queue, or the cache controller, we refer
to it as a late-enforced fence. Late enforcement has
two advantages: 1) it allows the frontend to make
more progress in the presence of a fence and 2) it
shifts the fence enforcement point toward the leak-
ing structure (e.g., the cache), reducing the impact
on instructions that do not access that structure, and
allowing for the enforcement of more fine-grained
serialization rules (e.g., allow cache hits but not
misses). Figure 2 shows potential fence enforcement
points at various stages in the processor pipeline.

The later a fence is enforced, the fewer the side
channels it protects against. For example, Intel’s
LFENCE prevents information leakage through all
microarchitectural structures that appear after the
instruction queue. However, to prevent informa-
tion leakage through the instruction cache side

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

52 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

channel, we would have to resort to a regular seri-
alizing instruction, resulting in even higher-perfor-
mance overheads. Similarly, a fence enforced at
the data cache controller level would only mitigate
data cache-based side channels and will not protect
against an FPU-based side channel (refer to [7] for
more detailed description of the attacks). Instead,
the FPU-based side channel may be mitigated using
a different fence that is appropriately configured and
enforced at the reservation station, the FPU, or an
execution port.

Strict versus relaxed enforcement
Depending upon how prohibitive they are, we

next classify fences into strict and relaxed. Strict
fences are highly prohibitive and do not allow any
instructions to pass through them until the fence
retires, whereas relaxed fences allow certain types
of instructions to pass through them. For example,
an alternate version of SFENCE that is enforced at
the load/store queue and allows all instructions
to pass except stores is a late-enforced and relaxed
fence. On the other hand, all ×86 serializing instruc-
tions including LFENCE are early-enforced and strict.
Customizing the micro-op stream with early-en-
forced and strict fences typically results in slower
execution when compared to customization with
late-enforced and relaxed fences. However, with
carefully enforced constraints, the late-enforced

and relaxed fences could offer similar, if not better,
security guarantees.

Early versus late commit
A fence typically remains effective until it gets

committed or squashed. According to Intel [8], a
serializing instruction is only allowed to be commit-
ted if there is no preceding outstanding store that is
waiting to be written back. While this behavior might
be necessary for device synchronization or memory
ordering enforcement, for the purpose of securing
speculative execution against Spectre attacks, there
is no need to wait for stores to be written back. This
is because write buffers are not committed to the
cache until the store reaches retirement, and there-
fore the fact that a store is waiting for an outstanding
writeback request to complete is sufficient evidence
that it did not occur along a misspeculated path.

Allowing a fence to commit early without waiting
for preceding outstanding stores to write back can
release the pipeline to again making forward pro-
gress, in some cases saving significant delays. There-
fore, in this work, we propose and study the effects
of an early-commit version of each fence.

Newly prsposed fences
To better understand the potential for fences

beyond those that already exist, we propose and
evaluate six new types of fences, as summarized in
Table 1. We describe each of them in greater detail
below.

The LSQ-LFENCE and the LSQ-MFENCE are relaxed
fences enforced at the load/store queue. While LSQ-
LFENCE is in effect, it does not allow any subsequent

Figure 2. Fence enforcement points.

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

53July/August 2022

load instruction to be issued out of the load/store
queue, thereby preventing the cache state from being
changed by load instructions on misspeculated paths.
Thus, the LSQ-LFENCE mitigates the Spectre variant-1
attack. On the other hand, the more restrictive LSQ-
MFENCE does not allow any subsequent memory
instruction (both loads and stores) to be issued out of
the load/store queue, until the fence commits.

The CFENCE is a relaxed fence and is enforced
at the cache controller level using the following
set of rules. First, like any other fences, it also
allows all preceding instructions to proceed.
Second, since store instructions do not commit
the contents of the write buffer until the instruc-
tion retires, they are unaffected by the CFENCE.
Finally, it labels any subsequent load as a nonmod-
ifying load and allows it to pass through the fence,
but the load is restricted from modifying the cache
state. In particular, a nonmodifying load that results
in a cache hit is allowed to read the contents of
the cache, but is restricted from changing the LRU
and other metadata bits. A nonmodifying load that
results in a cache miss is marked as uncacheable,
allowing the memory read request to complete
without altering the cache state. In this way, we
avoid updating the cache state upon encountering
a speculative load and do not leave any observ-
able cache footprint along misspeculated paths,
thereby mitigating the Spectre variant-1 attack. For
most well-behaved programs, the cache miss rate
will be small enough that using CFENCE results in
considerably lower performance overhead than
other types of fences.

This approach works on an application not uti-
lizing crosscore shared memory or any program
running on a processor with a relaxed consistency
model. However, it is important to extend our pro-
tection to cross-core shared memory applications
as they still constitute a significant proportion of
today’s software systems. Later in this section, we
introduce a constrained version of this fence that
works on shared-memory applications with a strong
consistency model.

PFENCE is a relaxed fence that is enforced at a
specific execution port, and while in place, does
not allow any instruction to be dispatched through
that execution port. For example, PFENCE can
sit in the execution ports that are associated with
the floating-point unit and then not allow float-
ing-point instructions to be executed speculatively.

This protects against speculative execution attacks
that use the contention on FPU or a particular exe-
cution port as a medium to leak information. In
addition, since PFENCE is a relaxed fence, it does
not affect the instructions that do not access the
specific execution port. In the case of FPU-based
attacks, it allows integer, load/store, and control
instructions to proceed, minimizing the perfor-
mance overhead of the defense. Since these types
of attacks usually target infrequently used instruc-
tions (e.g., AVX2 instructions), a targeted fence like
PFENCE can defend against them with minimal
performance overhead.

DFENCE is a relaxed fence that is enforced at the
memory disambiguation predictor unit and does not
let load instructions pass if there is an inflight store
whose address is not yet calculated. If all preced-
ing stores have known addresses, then loads can
be issued if there is no address conflict. By stopping
the memory dependency prediction, DFENCE can
protect against variants of the attack that exploit this
kind of speculation, such as variant-4 or speculative
store bypass.

Interactions with memory consistency
Memory consistency models define correct

behavior of a shared memory system in terms of
both allowed values that dynamic loads may return
and the final state of the memory. TSO is a relatively
strict memory consistency model implemented
by × 86 that permits store-to-load reordering but for-
bids all other observable reordering of loads and
stores. Therefore, for example, any observable load-
to-load reordering is forbidden in TSO. However, to
attain memory-level parallelism, modern proces-
sors allow speculative reordering of the loads while
it is not observable; and upon detecting a violation,
just like other speculative features in the processor,
they also squash and rollback.

 
Table 1. Characteristics of different fence types.

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

54 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

Recall that when an LSQ-LFENCE or an LSQ-
MFENCE is in effect, no younger load is allowed to
be issued out of the load/store queue. Therefore, the
proposed LSQ fences comply with TSO, as they main-
tain the ability of the processor core to invalidate the
speculatively loaded values. The proposed CFENCE,
however, allows younger loads to be issued, but
restrict them from modifying the cache state, until
the CFENCE is in effect. In the case of directo-
ry-based cache coherency protocols, this can cause
the shared cache to be accessed without updating
the directory. This could potentially cause scenarios
in which the core does not receive any invalidation
for the speculatively read values and could therefore
cause a TSO violation and incorrect execution.

On a machine with a weaker consistency model,
this behavior is not guaranteed to the programmer
and would thus require other synchronization prim-
itives to enforce it, thus removing the need for the
CFENCE to provide this guarantee.

CSF, due to its fine-grain reconfigurablity, has the
ability to protect different regions of the programs
with different fences. For multithreaded shared-mem-
ory programs that need the TSO consistency model,
we introduce a new variant of CFENCE, called
CFENCE-TSO. CFENCE-TSO allows the fence-pass-
ing younger loads to access the local caches (e.g.,
L1 and L2), but the load is restricted from being for-
warded to the next-level shared caches. In the case
of local cache misses, the request would get delayed
until the CFENCE-TSO gets committed, that is, when
the load is no longer speculative. Note that CFENCE-
TSO can allow fence-passing younger loads to access
a lower-level local cache (e.g., L2) only if the cache
forward invalidation requests to the core. As with
CFENCE, this does not inhibit the performance in
the case of cache hits, but incurs a higher cost than
CFENCE in the presence of frequent misses.

Fence frequency optimization
The most naïve, yet secure way to restrict specula-

tion attacks is to liberally instrument every instruction
of a vulnerable type (e.g., load instructions in the case
of cache side channels) in the program with a fence
micro-op. In fact, not every instance of a vulnerable
instruction type is necessarily vulnerable; for example,
all the loads in the program are not vulnerable to spec-
ulative attacks via cache side channels. Therefore, we
can reduce the number of fences inserted. However,
failing to insert even a single necessary fence would

enable a Spectre attacker to read the whole victim’s
memory space, so it is of crucial importance that fence
frequency optimizations be conducted meticulously.
In the following, we introduce two secure optimiza-
tions for reducing the number of fences.

Basic block-level fence insertion
The source of the Spectre attack is dynamic con-

trol speculation, which implies that the speculation
begins with a branch prediction and the processor
starts speculatively executing along the predicted
path. To fully mitigate this attack, we want a fence
between each branch and subsequent loads; but if
one branch is followed by four loads, we only need
one fence to protect all four. Thus, in this optimiza-
tion, we propose to only instrument the first instance
of a vulnerable instruction type (e.g., first load) of
each basic block. This is simply implemented by
setting a flag in hardware whenever a branch is
decoded and then insert a micro-op in the alterna-
tive load decoding that, along with the fence, also
resets the flag. When the flag is not set, the original
decoding is used.

Taint-based fence insertion
However, even one fenced load per basic

block is likely still too conservative. In all known
instances of the attacks, the attacker performs
some operations (mostly memory read) based on
untrusted data that leak information. For exam-
ple, in Spectre variant-1, the attacker provides an
out-of-bound index to an array. Here, we assume
any information that comes from the user address
space and input devices (e.g., via the ×86 IN
instruction) is untrusted. In particular, we instru-
ment syscall and int 0 × 80 instructions with a set
of micro-ops that mark all the input registers of the
syscall (e.g., rax, rdi, rsi, etc., on Linux × 86_64) as
tainted. In addition, we also consider DMA’d pages
as untrusted, for which we rely on the IOMMU to
mark DMA’d pages as tainted in the page table.
For the taint-based fence insertion optimization,
we propose the insertion of fences for only vulner-
able/tainted loads that operate on untrusted data,
by leveraging the decoder-level information flow
tracking strategy described in [7]. For the scenar-
ios where the kernel is invoked without a syscall
(e.g., exceptions and interrupts), we rely on an
always-on fence insertion policy instead of the
taint-based fence insertion to protect the kernel

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

55July/August 2022

code—a policy that is easily enabled by CSF’s high
level of dynamic configurability.

Methodology
We closely follow the experimental meth-

odology described in [7], but here, to evalu-
ate CFENCE-TSO, which is aimed at protecting
shared-memory programs, we also experiment
with the multi-threaded PARSEC benchmarks. In
that experiment, we simulate a 4-core processor
with 2 MB last-level cache and a defense that is
always on, with basic block-level fence insertion
for all user and kernel memory accesses.

Evaluation
Figure 3 measures the performance impact of

three different fences: 1) the standard × 86 LFENCE;
2) the LSQ-MFENCE; and 3) the CFENCE, all enforced
with late commit, pessimistically inserted for every
kernel load in the program. CFENCE incurs the lowest
performance overhead, since it is less restrictive than
the other two and is enforced at a much later pipe-
line stage. Overall, CFENCE reduces the incurred per-
formance overhead due to fencing by 2.3×, bringing
down the execution time overhead from 48% to 21%.

Furthermore, our experimentation with the ear-
ly-commit version of the CFENCE shows that, by

allowing the fence to commit earlier, it consistently
outperforms the late-commit version, saving about
4% in overall execution time on average.

In addition to CFENCE, we also measure the
performance effects of PFENCE-FPU that protects
against the variants of the attack that exploit FPU,
PFENCE-MULTDIV which allows all the instructions
to pass except multiplication and division instruc-
tions to protect against port contention attacks,
and DFENCE that protects against variant-4, or
speculative store bypass. Pessimistically inserting
PFENCE-FP, PFENCE-MULTDIV, and DFENCE for
all the vulnerable instructions in the kernel code,
on average, incur only 3.7%, 3.4%, and 1.8% execu-
tion time overhead, respectively. Furthermore, our
experiments with PARSEC benchmarks show that
CFENCE-TSo, in spite of the liberal fence insertion
(for all user and kernel loads, once per basic block)
and the always-on nature of the defense, degrades
the performance by just 20%.

Figure 4 shows the performance of our proposed
fence frequency optimization techniques. In the
first optimization, we inject the CFENCE only for
tainted loads, as indicated by the DLIFT engine. This
reduces the performance overhead of the defense
from 21% to 11% on average. We further optimize
the number of fences inserted by performing basic

Figure 3. Execution time of different fence enforcement levels
(normalized to insecure execution).

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

56 IEEE Design&Test

2021 Top Picks in Hardware and Embedded Security

block-level fence insertion. This results in an addi-
tional 4% improvement in performance.

Related work
Several works have focused on mitigating the

speculative execution attacks at the hardware level.
SafeSpec [9] and InvisiSpec [10] propose mitigating
the side effects of speculative execution by adding
new user-invisible shadow structures for caches and
TLBs that store transient results from speculative
instructions and commit them to the main cache/
TLB only if the speculation was deemed correct
and the corresponding instructions gracefully retire.
Even more recently, STT [11] and ConTExT [12]
have also used taint tracking techniques that allow
tracking of spurious information flow along misspec-
ulated paths, enabling more fine-grained protection
against covert communication that hinges on using
speculatively accessed data. CSF’s approach toward
information flow tracking is different than those
works. They consider any speculatively loaded value
as untrusted, whereas CSF’s notion of trust is similar
to a classic information flow tracking where any data
that comes from untrusted channels is considered as
untrusted.

In this work, we propose CSF, a set of architec-
tural techniques that provide high-performance
defense against Spectre-style attacks. We show
that we can reduce fencing overhead by a factor

of 6 compared to a conservative fence insertion
method. This is done by injecting fence instruc-
tions dynamically with no recompilation and
binary translation required. This allows us to
employ runtime information to strategically insert
fences when needed. This work also introduces
new fence primitives which protect sensitive
structures from speculation-based microarchitec-
tural effects, with minimal impact on instruction
throughput in the pipeline. We introduce protec-
tions for a wide variety of attacks via a small set of
targeted fence implementations and an adaptive
framework for fence insertion.� 

Acknowledgments
We would like to thank the anonymous review-

ers for their helpful insights. We would also thank
Josep Torrellas for helpful suggestions on this work.
This work was supported in part by NSF under Grant
CNS-1652925 and Grant CNS-1850436, in part by
NS-F/Intel Foundational Microarchitecture Research
under Grant CCF-1823444 and Grant CCF-1912608,
and in part by DARPA under Agreement HR0011-
18-C-0020. This article is an extended version of the
paper, “Context-Sensitive Fencing: Securing Spec-
ulative Execution via Microcode Customization,”
presented at the ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

Figure 4. Impact of fence frequency optimizations on execution
time.

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

57July/August 2022

 Direct questions and comments about this article to
Mohammadkazem Taram, Department of Computer
Science and Engineering, University of California
at San Diego, La Jolla, CA 92093 USA; mtaram@
cs.ucsd.edu.

 References
	 [1]	 P. Kocher et al., “Spectre attacks: Exploiting

speculative execution,” Jan. 2018, arXiv:1801.01203v1.

	 [2]	 M. Lipp et al., “Meltdown: Reading kernel memory

from user space,” in Proc. USENIX Secur. Symp., 2018,

pp. 1–18.

	 [3]	 Intel Corporation, “White paper: Intel analysis of

speculative execution side channels,” Intel, Santa Clara,

CA, USA, Tech. Rep. 336983-001, Revision 1.0, Jan.

2018. [Online]. Available: https://newsroom.intel.com/

wp-content/uploads/sites/11/2018/01/Intel- Analysis- of-

Speculative-Execution- Side- Channels.pdf

	 [4]	 A. Bhattacharyya et al., “SMoTherSpectre: Exploiting

speculative execution through port contention,” in

Proc. ACM SIGSAC Conf. Comput. Commun. Secur.

(CCS), 2019, pp. 785–800.

	 [5]	 V. Kiriansky and C. Waldspurger, “Speculative

buffer overflows: Attacks and defenses,” 2018,

arXiv:1807.03757.

	 [6]	 M. Taram, A. Venkat, and D. Tullsen, “Mobilizing the

micro-ops: Exploiting context sensitive decoding for

security and energy efficiency,” in Proc. Int. Symp.

Comput. Archit. (ISCA), 2018, pp. 624–637.

	 [7]	 M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive

fencing: Securing speculative execution via microcode

customization,” in Proc. 24th Int. Conf. Archit. Support

Program. Lang. Oper. Syst. (ASPLOS), 2019,

pp. 395–410.

	 [8]	 Intel 64 and IA-32 Architectures Optimization

Reference Manual, Intel Corp., Santa Clara, CA,

USA, Mar. 2009.

	 [9]	 K. N. Khasawneh et al., “SafeSpec: Banishing the

spectre of a meltdown with leakage-free speculation,”

2018, arXiv:1806.05179.

	[10]	 M. Yan et al., “InvisiSpec: Making speculative

execution invisible in the cache hierarchy,” in Proc. Int.

Symp. Microarchit. (MICRO), 2018, pp. 428–441.

	[11]	 J. Yu et al., “Speculative taint tracking (STT): A

comprehensive protection for speculatively accessed

data,” in Proc. Int. Symp. Microarchit. (MICRO), 2019,

pp. 954–968.

	[12]	 M. Schwarz et al., “ConTExT: A generic approach for

mitigating spectre,” in Proc. 27th Annu. Netw. Distrib.

Syst. Secur. Symp. (NDSS), San Diego, CA,

USA, 2020, pp. 1–18.

Mohammadkazem Taram is pursuing a PhD
with the Department of Computer Science and Engi-
neering, University of California at San Diego, La
Jolla, CA, USA. He is interested in computer archi-
tecture, security, and privacy. Taram has an MS in
computer engineering from Sharif University of Tech-
nology, Tehran, Iran.

Ashish Venkat is an Assistant Professor with the
Department of Computer Science, University of Vir-
ginia, Charlottesville, VA, USA. His research interests
are in computer architecture and compilers, espe-
cially in instruction set design, processor microarchi-
tecture, binary translation, code generation, and their
intersection with computer security and machine
learning. Venkat has a PhD from the University of
California at San Diego, La Jolla, CA, USA.

Dean Tullsen is a Professor with the Department
of Computer Science and Engineering, University of
California at San Diego, La Jolla, CA, USA. He works
in the areas of computer architecture, compilers, and
security. He is a Fellow of IEEE and ACM.

Authorized licensed use limited to: Purdue University. Downloaded on March 08,2025 at 00:21:17 UTC from IEEE Xplore. Restrictions apply.

