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Abstract—Hardware-assisted Fault Isolation (HFI) is a minimal extension to current
processors that supports secure, flexible, and efficient in-process isolation. HFI
addresses the limitations of existing software-based fault isolation (SFI) systems
including: runtime overheads, limited scalability, vulnerability to Spectre attacks, and
limited compatibility with existing code and binaries. HFI can be seamlessly
integrated into existing SFI systems (e.g. WebAssembly), or directly sandbox
unmodified native binaries. To ease adoption, HFI relies only on incremental
changes to existing high-performance processors.

Introduction

I solation primitives have a critical impact on how we
organize software systems for security, reliability,
flexibility, and performance.
Today, familiar isolation primitives such as virtual

machines, processes, and containers, all rely on a com-
mon set of underlying hardware primitives, i.e., page
tables and protection rings. However, in recent years,
software developers have been reaching for another
technique, Software-based Fault Isolation (SFI)1,2—to
overcome the limitations of existing primitives.
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SFI enforces isolation in-process, i.e., it allows
the creation of isolated “sandboxes” in a process
(or kernel) address space, through a combination of
compiler instrumentation and virtual memory tricks.
SFI is attractive as it avoids the limitations of existing
hardware based isolation primitives1,3 such as high
context-switch overheads, slow cold-starts, and scaling
limitations.

With the wide-spread adoption of WebAssembly
(Wasm), SFI has become ubiquitous. In the browser,
Wasm powers applications used by billions of people
daily (e.g. Zoom, Figma, Photoshop). Beyond the
browser, developers are using Wasm to support use
cases that existing isolation primitives can’t—thanks to
the novel capabilities SFI offers.
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To start, SFI supports context-switches for roughly
the same cost as a function call — orders of magnitude
cheaper than existing isolation primitives. This enables
isolation that is tightly integrated with high performance
applications. For example, Wasm is used to provide
extensibility in micro-service dataplanes (Istio), real-
time databases (SingleStore) data streaming platforms
(RedPanda), and SaaS applications (Shopify). This tight
integration also enables sandboxing to be retrofitted into
existing applications—to contain the impact of memory
safety vulnerabilities—without costly re-engineering. For
example, Firefox4 now relies on Wasm to sandbox the
third-party C libraries it relies on for audio decoding,
XML parsing, spell checking, and many other tasks.

SFI also enables fast context creation. For example,
production function-as-a-service (FaaS) systems can
spin up a new Wasm instance in 5µs5, instead of the
tens to hundreds of milliseconds it takes to spin up a
container or virtual machine. This has enabled a new
class of high-concurrency, low-latency edge computing
platforms from Fastly, Cloudflare, Akamai, etc.

While SFI’s unique capabilities have opened the
door to many new use cases — it also has a variety
of limitations including performance overheads, scaling
limitations, limited compatibility with existing code and
binaries, and Spectre Safety. These are the natural
result of the fact that SFI is a hack–an ad-hoc software
techniques trying bridge the gap between past mod-
els of hardware protection and the current needs of
software systems.

To overcome these limitations, we developed
hardware-assisted fault isolation (HFI)–a minimal set
of non-intrusive architecture extensions that bring first-
class support for in-process isolation to modern pro-
cessors.

HFI offers primitives that systematically eliminate
typical software (and hardware) isolation overheads
by design: it imposes near-zero overhead on sandbox
setup, tear-down, and resizing; it can support an
arbitrary number of concurrent sandboxes; it offers
context-switch overheads on the same order as a
function call; it can share memory between sandboxes
at near-zero cost; it provides flexible low-cost mitigations
for Spectre, and near-zero cost system call interposition
(for native binaries).

HFI provides first-class assistance for Wasm and
similar systems by offering secure, scalable, and ef-
ficient hardware primitives that can be used as a
drop-in replacement for SFI—it also provides first-class
support for backwards compatible in-process isolation,
allowing it to sandbox existing native binaries and
dynamically generated code. HFI achieves this with
minimal additional hardware and minor changes to the

control and data paths of existing processors, making
it easy to adopt.

SFI and its Limitations
SFI is the only widely deployed technology for fine grain
in-process isolation today. It’s unique capabilities are
enabling the growth of in-process isolation in many
domains, in particular, in the form of WebAssembly.
As discussed, SFI achieves this through an ad-hoc
software technique which allow it to skirt some of the
key limitations3 of existing hardware isolation—however,
this ad-hoc approach brings limitations of its own.

Conceptually, SFI enforces isolation by interposing
on all memory access through compiler instrumentation.
To implement this, memory is viewed as a set of con-
tiguous memory regions with a base (starting address)
and a size—a compiler adds the base address of a
sandbox to the operand of any memory operation, e.g.,
load, then checks that the result is in-bounds, rather
like a poor man’s version of segmentation.

Naively, we could imagine implementing this by
adding explicit bounds checks to each memory
load/store and instruction fetch, however, this can easily
slow down code by a factor of 2×2 or more. Instead,
Wasm and other modern SFI systems (e.g., Native
Client) rely on a faster technique which relies on the
MMU to enforce bounds implicitly using a system of
large address spaces and guard regions.

Wasm runtimes implement this by allocating a 4 GiB
address space (called a linear memory in Wasm),
followed by a 4 GiB guard region (unmapped address
space) for each sandbox. When accessing linear mem-
ory, each Wasm load/store instructions instruction takes
two 32-bit unsigned operands, that are added, resulting
in a 33-bit address—and the result is added to a 64-bit
base address—the starting address of a linear memory.
By construction, any 33-bit unsigned offset plus a base
address will be within 8GB of the base; thus, access
beyond the first 32-bit (4GB) address space will trap.
To isolate control flow, Wasm also relies on software
control flow integrity6.

Despite this clever design, Wasm still has many lim-
itations, some fundamental to SFI, and others specific
to Wasm’s design:

32-bit address spaces. Guard region based SFI only
works for 32-bit address spaces on 64-bit architec-
tures — supporting larger Wasm sandboxes, or smaller
processors, requires falling back to explicit bounds
checks with the high overheads (up to 2x) this implies.

Performance overheads. Even with these tricks,
Wasm/SFI can still easily impose performance over-
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heads of 40% — sometimes less, and sometimes a lot
more4.

Spectre. Wasm cannot protect itself against Spec-
tre attacks without performance penalties — to wit —
software-based mitigations add an additional 62% to
100% of overhead7.

Compatibility. A compiler must explicitly target Wasm
to use it. Thus, assembly language, platform specific
compiler intrinsics, dynamically generated code, and
existing binaries (e.g. precompiled libraries) are not
supported.

Scaling (Virtual memory consumption). As previously
noted, every Wasm instance consumes 8 GiB of virtual
address space, even if it only uses only a few 100 MB
or less, as most serverless edge workloads do today.

This limits scaling as virtual address space is finite —
typical x86-64 CPUs provide 247 bytes (128 TiB) worth
of user-accessible virtual address space1. Thus, at
8 GiB (233 bytes) per-instance we can run at most
16,000 (214) instances concurrently per-process. High
performance edge computing platforms are already
running up against this limit today. These systems spin
up a new instance in µ-seconds for every incoming
network request, and requests often block for I/O; thus
massive concurrency is the norm.

At present, their only recourse is to spin up more
processes. Unfortunately, this leads to load imbalances
and expensive context switch overheads as processes
contend for physical cores. Also, applications that use
FaaS platforms don’t always consist of just one function,
they can be multiple functions that want to communicate
(function chaining). In a single address space, this
communication is as fast as a function call, however,
this is easily 1000× to 10000× slower across process
boundaries due to use of inter-process communication
(IPC).

The main reason FaaS providers use Wasm is
to avoid these overheads in the first place. FaaS
providers would rather schedule more instances in fewer
processes — ideally one. If used efficiently, 128 TiB can
support quite a lot of serverless instances.

After struggling against these limitations for years in
the context of building and deploying production library
sandboxing and edge computing systems, we began to
explore what would be possible with some additional
help from hardware. Our resulting hardware extension
(HFI) offers all the benefits of SFI, and more, while
eliminating these limitations.

1Intel supports 52/57-bit address spaces in certain high-end
server CPUs.

HFI Overview
Hardware-assisted Fault Isolation (HFI) an instruction
set architecture (ISA) extension for modern processors
that offers secure, flexible, and efficient in-process
isolation, with minimal additional hardware complexity.

Several key design choices enable these unique
properties:

1) HFI does not rely on the MMU for in-process
isolation — instead, sandboxing is enforced via a new
mechanism called regions; regions enable coarse-grain
isolation (e.g., heaps) and fine-grain sharing (e.g.,
objects) within a processes’ address space.

2) HFI is fully available in userspace; thus, there are no
overheads from ring transitions or system calls when
changing memory restrictions, or entering and leaving
a sandbox.

3) HFI only keeps on-chip state for the currently
executing sandbox; thus, it can scale to an arbitrary
number of concurrent sandboxes — in contrast, many
other systems hit a hard limit as they keep on-chip state
for all active sandboxes1,8.

Functionally, HFI allows the creation of one or more
in-process sandboxes. These can be either hybrid
sandboxes, that integrate HFI’s primitives into existing
SFI system like Wasm, for increased performance,
scalability, security, etc. or native sandboxes, that
can confine arbitrary untrusted binaries without any
additional software support—thus shedding some of the
compatibility and complexity baggage that accompanies
SFI based technologies such as Wasm that rely on
significant modifications to existing language toolchains.

To use HFI, a sandboxing runtime uses the
hfi_enter enter instruction, resulting in sandboxing
constraints (memory and control isolation) being en-
forced until the hfi_exit instruction is invoked, at
which time HFI returns control back to the runtime.
The runtime is responsible for saving and restoring the
sandbox’s context (e.g. general purpose registers), and
can multiplex many sandboxes across cores, scheduling
them as it sees fit.

A sandbox’s semantics are dictated by a set of
per-core HFI registers including: (a) region registers
that grant access to memory, (b) a register with the
sandbox exit handler—where system calls and sandbox
exits are redirected—supporting full control of privileged
instructions and control flow, and (c) a register with
sandbox option flags, e.g., whether the sandbox is a
hybrid or native sandbox.

Efficient Memory Access Control with Regions.
HFI’s memory and control isolation is configured using
a finite set of regions. Regions in HFI are base and
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bound pairs that identifies a range of memory that can
be accessed (e.g. stack, heap, code), and permissions
(read, write, execute) that apply to that range.

These checks are located in the heart of the pro-
cessor’s control and datapath, where every additional
gate matters. To optimize this, HFI’s utilizes multiple
types of specialized regions.

Concretely, an approach that uses two 64-bit com-
parators (per region) would be the obvious design
choice for ensuring memory accesses are restricted
to the configured regions; however, these are large
circuits that would add unacceptable delay and power
consumption to a processors critical path. Instead, HFI
offers multiple region types, each of which reduces
hardware complexity by being specialized to a particular
task. Next, we describe these different region types and
how they are used.

HFI uses implicit regions to apply checks to every
memory access, and grant access on a first-match
basis. For example, if sandboxed code executes an
instruction — load address X into register Y — HFI will
check if any region register has a range that includes
X in parallel, then apply the permissions from the first
matching region. If the first match has read permission,
the operation will proceed, else HFI will trap.

Implicit regions are essential for situations when
every memory operation in an application must be
checked. In exchange for this power, they assume
some constraints on a region’s size and alignment,
in particular, implicit regions require a region’s address
to occupy an aligned location and have a size which is
a power of 2.

This restriction typically requires developers to only
make slight modifications to how memory allocation
occurs; however, it allows hardware to implement the
region checks as simple, fast masking operations.
Again, for hardware simplicity, implicit regions are
further specialized into code and data regions. In total,
HFI provides 4 implicit data regions, and 2 implicit code
regions for a sandbox.

HFI also provides 4 explicit data regions, that
trade the generality of implicit regions for precision.
Specifically, all loads and stores to explicit regions are
region-relative, i.e., name the region they apply to in
using the new hmov[1-4] instruction, a variant of the
x86-64 mov instruction, with the region number encoded
in the instruction.

In exchange for this constraint, the size and align-
ment constraints of implicit regions are relaxed, allowing
more precise control over memory layout. There are
two types of explicit regions, small—that support byte
granular sizes alignment, and are limited to a max of
4GB, and large—which are 64K-aligned and can be

any multiple of 64K in size. This added specialization
again supports simpler hardware; explicit regions can
be supported with just a single 32-bit comparator. In
total, HFI provides 4 explicit data regions for a sandbox.

Using Regions. By default, a sandbox cannot ac-
cess any memory—region registers must be set
before sandbox entry (hfi_enter), to grant mem-
ory access to a sandbox using a handful of new
instructions—hfi_set_region, hfi_get_region,
hfi_clear_region.

Using the above instructions to configure HFI’s
explicit and implicit regions meets a diverse set of needs.
HFI’s implicit regions are ideal for sandboxing unmod-
ified native binaries, where large regions of memory
(e.g. the stack, heap, code) are not as particular about
their size or alignment. While the added precision of
explicit regions makes them well suited to supporting
heaps for SFI systems like Wasm — where heaps grow
in fixed size increments, and all operations are already
explicitly relative to a region of memory — as well as for
fine-grain, zero-copy sharing of objects between two
different sandboxes.

System call interposition is another important feature
of HFI. Architecture support makes this very efficient
(syscall instructions are optionally converted to jumps
to a specified location in the processor’s decode stage),
simple, and accessible at user level. With this, HFI
can sandbox unmodified native binaries, while ensuring
sandboxing is not bypassed or disabled9. System call
interposition is used by setting a flag in the HFI option
register prior to sandbox entry, as well as providing
an exit handler — the location where system calls are
redirected to.

HFI offers a variety of other features to enable secure
and efficient sandboxing, for example, to mitigate
certain classes of Spectre attacks. Please consult our
full paper for more details10.

Evaluation
We implemented the HFI in the Gem5 simulator for
detailed performance analysis. We also used compiler-
based emulation (that emits instructions such as
cpuid, lfence etc. to insert appropriate slowdowns)
to efficiently evaluate longer running workloads and
validated that our emulator has similar performance
characteristics as our Gem5 simulator. Please consult
our full paper for more details10.

Performance Evaluation
We evaluated the performance and scalability of HFI
in three use cases: library sandboxing in a browser,
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Table 1. Impact of HFI Spectre protection on tail latency. We compared HFI and Swivel — the fastest software-based Spectre
mitigation, on several Wasm FaaS workloads. Swivel increased tail latency by 9%–42%. HFI’s increased tail latency by 0%–2%.

HFI Protection
XML to JSON Image classification Check SHA-256 Templated HTML

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Lucet(Unsafe) 421 ms 466 ms 231 3.5 MiB 12.2 s 14.7 s 1.62 34.3 MiB 589 ms 667 ms 161 3.9 MiB 45.6 ms61.8 ms2.19k 3.6 MiB
Lucet+HFI 431 ms 480 ms 227 3.5 MiB 12.2 s 14.7 s 1.62 34.3 MiB 602 ms 647 ms 165 3.9 MiB 45.7 ms61.2 ms2.18k 3.6 MiB
Lucet+Swivel 559 ms 616 ms 174 4.1 MiB 11.5 s 12.8 s 1.72 34.5 MiB 645 ms 709 ms 150 4.6 MiB 78.9 ms97.9 ms1.26k 4.2 MiB

a FaaS workload, and native sandboxing in a server
workload (NGINX).

Wasm Sandboxing in Firefox. To understand the end-
to-end performance impact of HFI, we evaluate the
performance of HFI in sandboxing font rendering in
Firefox. This benchmark stresses HFI’s transitions as
the code rapidly jumps from the sandboxed code to Fire-
fox code — one jump per glyph/letter. The benchmark
reflows the text on a page ten times via the sandboxed
libgraphite, and takes 1823 ms when using Wasm
with guard pages; 2022 ms when using Wasm with
bounds-checking; and 1677 ms when Wasm powered
by HFI — a 17% and 8% speedup respectively.

HFI and Scalability. As HFI eliminates the need for
guard regions, it can support far more concurrent in-
stances in a process’ address space, a highly desirable
trait in high scale serverless settings. To exercise this,
we modified Wasmtime, a Wasm runtime popular in
serverside settings, to use HFI instead of guard regions,
and spun up as many 1 GiB sandboxes as it would
support. As expected, it could create up to 256,000
1 GiB sandboxes in a single process, making full use
of the process’ address space 2.

HFI for Sandboxing Native Binaries. We used HFI
to sandbox a native binary and compared it ERIM8,
a state-of-the-art system for sandboxing. ERIM uses
Intel Memory Protection Keys (MPK) for sandboxing
memory accesses, and Linux’s seccomp-BPF to filter
system calls.

We first compare the overhead of ERIM’s seccomp-
BPF system call filter to HFI’s microarchitectural support
for the same. For this, we ran a custom syscall
benchmark that opens a file, reads it, and closes it
100,000 times. We found that using seccomp-BPF
version imposes an overhead of 2.1%, over HFI.

Next, we compare the throughput of the NGINX
web server delivering content when protecting session
keys with HFI and MPK respectively (similar to ERIM8).
HFI’s overhead ranges from 2.9% to 6.1%. compared to
MPK’s range from 1.9% to 5.3% — a slight increase due

2Wasmtime normally supports up to 21,504 sandboxes. It
is able to slightly exceed the 16K limit through a sophisticated
combination of guard regions and bounds checks.

to the cost of HFI’s metadata manipulation as well as
serialization on hfi_enter and hfi_exit for Spectre
protection.

Spectre Evaluation
We use proof-of-concept attacks from the TransientFail
(the in-place Spectre pattern history table attack) and
Google SafeSide (the in-place Spectre branch target
buffer attack) test suites to ensure HFI is resistance
to Spectre attacks. HFI prevents both these attacks
ensuring sandboxed code cannot speculatively access
secret data.

We compared HFI’s Spectre protection overheads,
to the performance of Swivel7, the fastest known
compiler-based approach to mitigating Spectre in Wasm.
We evaluated this by measuring costs of Spectre
protection on several common FaaS Wasm workloads
running in the Rocket webserver. We compiled our
Wasm workloads with a Lucet Wasm compiler without
Spectre protections, Lucet+Swivel-SFI protections, and
with Lucet+HFI using native sandbox. Finally, we also
record the binary sizes of all three builds.

Table 1 shows that HFI guards against Spectre
with very low drop in tail-latency and no noticeable
binary bloat, while Swivel incurs noticeable overheads
for the same. In fact, the only overheads imposed by
native sandbox HFI are due to region construction and
sandbox state transitions (two per connection), and
these costs are amortized by the cost of the workload.

HFI across different architectures
Our initial HFI prototype10 was implemented in the
context of the x86-64 architecture (See Figure 1).
However, it’s general design and key principles such
as the region specialization to minimize circuit area,
avoiding extra pipeline stages, restricting saved state to
only the currently executing sandbox etc., are equally
applicable to other ISAs, with some modifications to
addresses the particular constraints of other ISAs.

For example, on x86s, we added four new hmov1,

hmov2, hmov3, hmov4 instruction prefixes that can
be added to any instruction accessing memory, indi-
cating it should operate on one of the explicit data
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Figure 1. HFI Impact on the x86 data pipeline. The x86 data pipeline with added any HFI components in Green. HFI adds
no overhead to the data path — no new pipeline stages are added — and all new operations take place in parallel with the dtb
(dTLB) lookup or instruction decode stages.

regions. However, when adapting HFI to RISC-V, we
found this approach was incompatible with RISC-V
as it does not support instruction prefixes. Rather
each RISC-V instruction accessing memory —load,

store, load_fp, store_fp— would each need
four new opcodes to create versions of these instruc-
tions accessing explicit regions. This would put unac-
ceptable pressure on RISC-V’s already very constrained
operation code (opcode) space. Instead, for RISC-V
we add a new instruction h_set_region to set the
active explicit region, and limit hload, hstore etc.
to only modify the active region. While this leads to a
less compact instruction encoding in the case where
multiple regions are being accessed concurrently, it
alleviates this pressure on the op-code space, and also
keeps the ISA simpler, keeping with the RISC design
philosophy.

Another aspect of our design that differs across
ISA’s (and processors more generally) is how it is instan-
tiated the microarchitectural level. In particular, HFI’s
informed by a "living off the land" design philosophy,
i.e., we aimed to leverage existing hardware already
present in the pipeline as much as possible.

Again, going back to our x86 example, HFI’s ex-
plicit regions can be implemented by repurposing
the circuits for 32-bit segmented memory and 64-bit
segment relative addressing. Together these features
are implemented using a 32-bit comparator and a 64-
bit adder respectively — precisely the circuits needed
for HFI’s hmov instruction — and are both circuits that
would be otherwise unused for this instruction. On
other architectures, the circuits available for reuse
will differ. For example, future RISC-V standards will
incorporate support for pointer masking, which could be

reused to support implicit regions. While architectures
such as the ARM Cortex-M, feature hardware for data
watchpoint and trace (DWT)’s range checks, which
could be repurposed to implement data region bounds
checks.

Applications and Implications
By providing first class support for in-process isolation.
HFI opens the door to greater capabilities, and new
applications in a variety of domains, here we explore
just a few.

Easier Library Sandboxing
Billions of lines of vulnerable C/C++ underlie todays
software ecosystem11. A cursory inspection of any
open source ecosystem of a “safe” language such as
Javascript, Java, Rust, Python, etc. reveals thousands of
packages that are essentially wrappers around existing
C/C++ libraries.

Sandboxing is a potentially powerful tool for mitigat-
ing memory safety vulnerabilities in these libraries, as
well as other defending against other attack vectors,
e.g., supply chain attacks. Unfortunately, sandboxing is
rarely utilized, as the high cost of context switches
(and consequently IPC) and sandbox creation with
process sandboxing constrains the generality of this
technique, and often requires significant re-engineering
of applications to use it.

While SFI toolchains in such as Wasm have opened
the door to retrofitting sandboxing4, i.e., sandbox-
ing existing libraries in-place without expensive re-
engineering—Wasm’s many limitations still restrict the
usefulness of this technique. In practice, we have seen
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that many libraries have hand written assembly code,
dynamically generated code, SIMD code that was poorly
supported/unsupported, etc.

HFI renders these practical obstacles moot, elim-
inating many of the performance and engineering
overheads that have limited the usefulness of this
technique11.

Secure, Compatible, and Efficient Serverless
Currently serverless infrastructure existing its two radi-
cally different forms. On one hand, datacenter server-
less architectures like AWS Lambda, Azure Functions,
Google Cloudfunctions, etc. rely on heavy weight
isolation mechanisms such as VMs and containers to
isolate individual instances. While this offers excellent
compatibility with existing languages and libraries, and
a strong foundation for multi-tenant isolation, startup
overheads and latency are often very high (in the 10s
to 100s of milliseconds).

On the other, edge computing platforms such
Cloudflare workers, and Fastly’s Compute@Edge, can
offer orders of magnitude improvements in throughput
and latency by relying on software based isolation
(utilizing Wasm and Javascript)—but in turn sacrifice
compatibility. For example, Java and .NET both have
mature just-in-time compilers (JITs) and runtimes, that
have been optimized and hardened over decades,
which cannot be used in these environments.

HFI offers the potential to eliminate this disconnect.
Opening the door to future serverless platforms that
could offer edge level scaling, efficiency, and respon-
siveness, while retaining the security and compatibility
of existing datacenter serverless platforms.

Secure and Efficient Browser JIT Hardening
One of the hard challenges in browser security today
are memory safety bugs in JIT’s. Modern Javascript
JIT’s are marvel’s of engineering, offering astonish-
ingly good performance for a dynamic language like
Javascript. Unfortunately, the combination of complex
optimizations required to achieve this, and the com-
plexity of JavaScript itself, result in a very large attack
surface.

Further, some of the best techniques for mitigating
these bugs in most applications are not applicable
in a JIT context. For example, as bugs are in code
optimization and generation, safe languages such as
Rust are often of little benefit, since the bugs are in
machine code generated by the JIT. Normal Write-xor-
execute (W⊕X) restrictions that prevent code injection in
normal applications also break in a JIT environment. JIT
compilers often have to modify generated executable

code; requiring JIT compilers make expensive system-
calls to change permissions of memory prior to such
changes imposes both a direct slowdown of the JIT
compiler, and a system-wide slowdown due to frequent
modifications of the translation look-aside buffer (TLB).

One compelling approach to limiting the impact
of these bugs is sandboxing JIT’s code, for example,
Chrome’s Ubercage12. Unfortunately, such efforts cur-
rently have to trade-off security for performance; for
example, Ubercage it does not incorporate software
protections for control flow hijacking, let alone Spectre,
offering multiple potential ways to bypass it.

HFI can advance the state-of-the-art in JIT harden-
ing in a number of ways.

First, HFI offers per-thread memory-permissions
which can be set without system-calls; thus a JIT
compiler running on one thread can enforce a write
permission on memory, while code compiled by a
JIT executing on a separate thread can enforce an
executable permission, restoring the benefits of write-
xor-execute in a JIT setting.

Next, HFI can eliminate the limitations of JIT sand-
boxes such as Ubercage, by eliminating both the SFI
overheads it suffers from today, and allow it to efficiently
add new restrictions such as efficiently enforcing Control
Flow and Spectre isolation—thus, eliminating the paths
to bypass sandboxing that currently exist12.

Path to Adoption
HFI offers a unique solution for hardware-assisted
isolation that balances novel acceleration capabilities
with practical adoption.

Previous approaches to sandboxing that re-purpose
existing hardware8 such as Memory Protection Keys,
consistently fall short with respect to scaling, perfor-
mance, security9, etc. While ambitious novel architec-
tures such as CHERI impose high costs in terms of
hardware complexity, and modifying existing software
stacks, that pose significant barriers to adoption. HFI
illustrates a middle path between these two extremes,
offering hardware support for in-process isolation that
is both capable and easy to adopt.

In recent years, SFI, in the form of Wasm, has
seen broad adoption on the web; in edge computing
platforms; for sandboxing of buggy C libraries4; and
providing safe extensibility in numerous applications.
Beyond its use in Wasm, SFI is also used by Chrome
to isolate it’s JavaScript JIT; and by the Linux kernel
(eBPF) to provide extensibility, performance analysis,
and security monitoring.

The widespread use of SFI allows HFI to avoid
the classic chicken-and-egg problem faced by new
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hardware security features — there is already a huge
base of software using SFI that can (with minor
changes) immediately benefit from the added security,
performance, scalability, etc. that HFI offers—while also
opening the door to use cases that are simply not
possible with SFI today.

To futher ease adoption, HFI was refined through
numerous iterations of feedback from architects at Intel
to determine what changes are practical in existing
high-performance processors. As a result, HFI offers
precisely what is needed to support in-process isolation
with a minimal hardware bill of materials.

Finally, HFI requires very little support from the OS
(on the order of tens of lines of code), again informed by
the reality that getting OS kernel support is a significant
barrier to rolling out new hardware features.

Our work with HFI is just beginning, engineers
who develop Chrome and Firefox are excited about
the benefits that HFI can bring to their hardening
efforts12; engineers at edge computing companies are
excited about its potential to improve scalability, security,
and performance on their platforms. And processor
architects are excited about enabling these benefits
with minimal hardware costs.
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