
0

A Compile-Time Optimization Method for WCET Reduction in
Real-Time Embedded Systems through Block Formation

MORTEZA MOHAJJEL KAFSHDOOZ, Sharif University of Technology
MOHAMMADKAZEM TARAM, Sharif University of Technology
SEPEHR ASAD, Sharif University of Technology
ALIREZA EJLALI, Sharif University of Technology

Compile-time optimizations play an important role in the efficient design of real-time embedded systems.
Usually, compile-time optimizations are designed to reduce average-case execution time (ACET). While
ACET is a main concern in high-performance computing systems, in real-time embedded systems concerns
are different and worst-case execution time (WCET) is much more important than ACET. Therefore, WCET
reduction is more desirable than ACET reduction in many real-time embedded systems. In this paper, we
propose a compile-time optimization method aimed at reducing WCET in real-time embedded systems. In
the proposed method, based on the predicated execution capability of embedded processors, program code
blocks that are in the worst-case paths of the program are merged to increase instruction level parallelism
and opportunity for WCET reduction. The use of predicated execution enables merging code blocks from dif-
ferent worst-case paths that can be very effective in WCET reduction. The experimental results show that
the proposed method can reduce WCET by up to 45% as compared to previous compile-time block formation
methods. It is noteworthy that compared to previous works, while the proposed method usually achieves
more WCET reduction, it has considerably less negative impact on ACET and code size.

Categories and Subject Descriptors: C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Compile-Time Optimization, Hyperblock, WCET

1. INTRODUCTION
Basic blocks on average consist of only 5 to 7 instructions [Fisher et al. 2005]. This
small number of instructions in each basic block restricts many optimization opportu-
nities that could be provided in larger code blocks. To overcome this limitation, some
block formation techniques were proposed to merge several code blocks into larger
blocks such as trace [Fisher 1981], superblock [Chang et al. 1991] and hyperblock
[Mahlke et al. 1992]. These block formation techniques, like many other compile-time
optimizations, aim at reducing average-case execution time (ACET). In these tech-
niques, using profiling data, most frequently executed code blocks are selected to be
merged into larger code blocks. From the viewpoint of general purpose computing,
this block selection approach is reasonable because ACET is the most important factor
of performance in general purpose computing. However, in many real-time embed-
ded systems, the most important factor, instead of ACET, is worst-case execution time
(WCET).

There is little work on exploiting block formation for WCET reduction. Zhao et al
[2005a] used block formation aimed at reducing WCET, where worst-case paths are
identified by a timing analyzer and then superblocks are formed over these paths

New Paper, Not an Extension of a Conference Paper.
This work is supported by the deputation of research and technology of Sharif University of Technology,
under grant G930827.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 0 Copyright held by the owner/author(s). 1539-9087/0/-ART0 $15.00
DOI: 0000001.0000001

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:2 M. Mohajjel et al.

at assembly-code level. Their method stops when code size limitation is reached or
there is no possibility for more superblock formation. In a later work, Lokuciejewski
et al [2010] proposed another block formation method for WCET reduction. Similar to
[Zhao et al. 2005a], they also form superblocks on WCET paths; but in their method,
superblock formation is conducted early at source code level and hence subsequent
optimizations can benefit from larger code blocks. However, in superblock formation,
only code blocks that are in one execution path can be merged together. This limitation
results in missing some optimization opportunities that could be provided by merging
code blocks from multiple execution paths.
In contrast to superblock formation, hyperblock formation by exploiting predicated ex-
ecution allows code blocks from multiple execution paths to be merged. Therefore, hy-
perblock formation has more flexibility than superblock formation and as we discuss in
this paper it can achieve more WCET reduction. To the best of our knowledge, the only
previous work that exploits hyperblock formation for WCET reduction was published
by Yan and Zhang [2008]. In their method, without considering worst-case paths, all
execution paths (including worst-case and non-worst-case paths) are merged together.
Although in some cases, this method (i.e. merging all execution paths) reduces WCET,
in some other cases, especially when the program has several execution paths, it can
even increase WCET.

In this paper, we propose a novel hyperblock formation method for WCET reduc-
tion. In the proposed method, based on information obtained from a timing analyzer,
worst-case path(s) are identified and hyperblocks are formed on these paths. Since the
proposed method exploits hyperblock, it has more flexibility than methods that exploit
superblock and hence it can achieve more WCET reduction. Moreover, since the pro-
posed method considers worst-case paths, it can also achieve more WCET reduction
than other methods which use hyperblock formation but do not consider worst-case
paths.

In this paper, we assumed that the target processor is a VLIW processor, which
supports predicated execution. The main reasons why we chose a VLIW processor are
as follows:

— VLIW processors have more predictable behavior than other modern processors such
as superscalar processors [Yan and Zhang 2008]. This is because in VLIW processors
instruction scheduling is conducted offline by the compiler and hence more details of
execution are known at design time.

— In addition to high predictability, VLIW processors provide high computational power
and hence are suitable for high performance real-time embedded systems [Fisher
et al. 2005].

— In VLIW processors, the management of hardware resources is usually conducted
at compile-time rather than at run-time. This makes VLIW processors more suitable
for compile-time optimization techniques [Fisher et al. 2005]. Moreover, compile-time
management of hardware resources simplifies the control unit of VLIW processors
and hence increases energy efficiency of these processors. Energy efficiency is an
essential requirement for many energy constraint real-time embedded systems.

It should be noted that the proposed method is not limited to VLIW processors and it
can be exploited for the other processors that support predicated execution (e.g. 32bit
ARM processors [Seal 2000]).

To evaluate the proposed method we implemented it in an optimizing compiler. We
also implemented some other similar block formation methods for fair comparison.
We tested our method and similar methods for several benchmarks from MiBench
[Guthaus et al. 2001] and Mälardalen [Gustafsson et al. 2010] benchmark suites. The
experimental results show that the proposed method significantly reduces WCET. In

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:3

the best case, the proposed method reduces WCET by 33% compared to the recent pre-
vious method that merges all execution paths and by 45% compared to the superblock
formation method. It should be noted that these results are estimated WCETs. This
is because calculating or measuring the real WCET by using the state-of-the-art ap-
proaches is impracticable [Wilhelm et al. 2008] and just an estimation of the real
WCET can be obtained. Therefore, the effectiveness of the proposed algorithm just
can be measured and seen as a reduction in WCET estimates. However, we believe
that the proposed algorithm just like the previous works (e.g., [Lokuciejewski et al.
2010; Zhao et al. 2005a]) is also effective in reducing the real WCET.

In addition to more WCET reduction compared to previous works, the proposed
method also has considerably less negative impact on ACET and code size. ACET is
important in real-time embedded systems that have energy constraints or reliability
concerns, because with reduced ACET we achieve more dynamic slack time that can
be exploited for reducing energy consumption [Aydin et al. 2004] or improving system
reliability [Pradhan 1996]. Also code size is of great importance in many embedded
systems, as it has been shown that code size efficiency has a considerable influence
on the performance, and energy efficiency of embedded systems [Fisher et al. 2005;
Henkel and Parameswaran 2007].

The rest of this paper is organized as follows. Section 2 reviews related works. Sec-
tion 3 presents the proposed method. Section 4 describes the experimental setup. Sec-
tion 5 shows the experimental results and finally Section 6 concludes the paper.

2. RELATED WORK
Several compile-time WCET optimization approaches have been proposed in the liter-
ature. WCET aware register allocation has been considered by [Falk 2009; Falk et al.
2011; Huang et al. 2014]. Falk [2009] and Falk et al [2011] proposed two methods
based on graph coloring and integer linear programming respectively. The main idea
behind these methods is to minimize the amount of spill codes on worst-case paths.
Huang et al [2014] focused on the phase-ordering problem in clustered VLIW proces-
sors. They proposed an iterative heuristic method to jointly conduct register allocation,
clustering and instruction scheduling for WCET reduction. Lokuciejewski et al [2008b;
2008a; 2009; 2010] considered various compile-time optimizations such as “procedure
cloning”, “procedure positioning”, “function inlining”, “loop invariant code motion” and
“trace scheduling” and used them for WCET reduction. Falk and Schwarzer [2006]
used “loop nest splitting” for optimizing WCET and improving time predictability.
Zhao et al [2005b] considered the overhead of jump instructions and proposed an
approach aimed at decreasing the number of jump instructions in worst-case paths,
thereby reducing WCET. “Loop unrolling” is exploited in [Lokuciejewski and Marwedel
2009] to reduce WCET. In this work, an unrolling factor is determined for each loop
based on its maximum number of iterations and adverse effects of unrolling.
For processors that use scratchpad memory (SPM), several compile-time SPM allo-
cation methods have been proposed (e.g. [Falk and Kleinsorge 2009; Suhendra et al.
2005; Wu et al. 2010]). Falk et al [2006] proposed a WCET aware C Compiler (WCC).
Schoeberl et al [2011] proposed a time predictable VLIW processor. In their work, com-
piler optimizations are used to reduce WCET; however, there is no reference to the
exploited optimizations.
Leupers [1999] exploited predicated execution to reduce WCET. In his approach, using
dynamic programming, conditional jumps are selected to be eliminated by predicated
execution. Puschner [2002] and Schoeberl et al [2009; 2011; 2015] used predicated ex-
ecution for improving time predictability. In their approaches, all execution paths of
the program code are merged into a single path. It is noteworthy that our work dif-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 M. Mohajjel et al.

fers from the mentioned works as none of them exploits block formation for reducing
WCET.

Block formation has been exploited by several previous works aimed at reducing
ACET (e.g. [Fisher 1981; Chang et al. 1991; Mahlke et al. 1992]). In these works, usu-
ally based on profiling data most frequently executed paths are identified and then
code blocks that are in these paths are merged into larger code blocks. Although simi-
lar to these works we exploit block formation, our work differs from these works since
as mentioned previously our goal is to reduce WCET instead of reducing ACET and
hence we form code blocks on worst-case paths instead of most frequently executed
paths. Moreover, since in many cases, profiling data cannot safely identify WCET and
worst-case paths we instead use timing analysis to identify WCET and worst-case
paths.
As we mentioned previously, there is little work on exploiting block formation for
WCET reduction. Zhao et al [2005a] and Lokuciejewski et al. [2010] exploited su-
perblock formation to reduce WCET. Our method differs from these methods as we
form hyperblocks instead of superblocks to reduce WCET. In another work, Yan and
Zhang [2008] exploited hyperblock formation for WCET reduction. However, in con-
trast to our method, their method is unaware of WCET and aggressively merges all
execution paths.

Whitham and Audsley [2010] used the concept of virtual trace to increase the time
predictability of out of order processors. A virtual trace is a sequence of basic blocks
that instead of being scheduled at compile-time are scheduled at run time by pro-
cessor. They proposed a trace formation algorithm at assembly level to select virtual
traces. Moreover, they dealt with the unbiased conditional jumps issue and exploited
predicated execution to solve it. This work also differs from our work as it considers
superscalar processors and runtime trace scheduling.

3. PROPOSED METHOD
In this section, we first provide a brief review of some concepts that we use to explain
the proposed method. Then, we provide the motivation behind using hyperblock forma-
tion for WCET reduction. Finally, we describe the proposed method and the technique
that we use for timing analysis.

3.1. Background
In this subsection, we review some concepts that we used through the paper to explain
the proposed method. It should be noted that we assume the reader is familiar with
the basic concepts such as predicated execution, control flow graph (CFG), and basic
block,[Fisher et al. 2005].

Trace is a cycle free code block that is made by merging some basic blocks existing
on a path of CFG. The definition of trace makes no restriction on the number of entry
points to a trace, thus a trace can have more than one entry point. However, allowing
more than one entry point to a trace complicates the generation of compensation code
[Fisher et al. 2005].

Superblock is a trace with the additional constraint that all the entrances are al-
lowed only to the first instruction of the superblock. In other words, a superblock is a
single-entry, multiple-exit trace.

Hyperblock is also a single-entry, multiple-exit block. However, in contrast to su-
perblock, hyperblock can contain several mutually exclusive paths of the program code
by using predicated execution.

Dominator and post-dominator. We say that block B is a dominator of block A, if
all paths from the entry block to block A, pass block B. Similarly, block B is called a
post-dominator of block A, if all paths from block A to the exit block, pass block B. It

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:5

should be noted that in this paper we assume (as is common for most of real CFGs)
there is a single distinguished entry and exit block in the CFG. In Fig. 1(a), block B1

is a dominator of block B3 and block B6 is a post-dominator of block B3.
Tail duplication. Superblock and hyperblock definitions do not have side entrances

by definition. This restricts the size of superblocks and hyperblocks that can be formed
and thereby decreases the achievable optimization opportunity. To avoid this restric-
tion, the tail duplication technique [Fisher et al. 2005] is used. In this technique, for
each side entry point of a superblock or hyperblock, the part of the code between the
side entry point and the end of the block is duplicated and the side entrances are re-
targeted to the duplicated counterpart. Fig. 1 shows an example for tail duplication.

(a) Selected basic blocks for block
formation

(b) Tail duplication for removing side
entrances

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx , Publication date: Month YYYY

B3

B4 B5

B6

B2

B1

B3

B4 B5

B6

B2

B1

B3

B4 B5

B6

B2

B1

B3'

B6'

B4'

(a) Control Flow Graph (b) Trace (c) Superblock (after tail

duplication)

Fig. 1: Tail duplication.

3.2. Motivation
Conventional global optimization techniques must be simultaneously conscious of all
execution paths in the program code, which makes compilation very complex and time
consuming. In contrast, superblock formation techniques only consider one path in the
program code at a time. Although superblock formation reduces the complexity of com-
pilation, some optimizations related to the multiple paths of the program code can be
missed. Hyperblock formation provides flexibility in the number of paths each block
contains. Therefore, it potentially provides more chances for compiler optimizations
than superblock formation and also does not have the complexity of global optimiza-
tion techniques [Fisher et al. 2005]. Hyperblock formation also eases the combination
of speculative and predicated execution, which previously was difficult [Mahlke et al.
1992]. Exploiting predicated execution in hyperblock formation removes time consum-
ing conditional jumps and hence can reduce execution time. Moreover, hyperblock for-
mation can improve the efficiency of software pipelining [Fisher et al. 2005].

In addition to the mentioned benefits, hyperblock formation has another important
advantage in reducing WCET. The general idea behind WCET reduction is to merge

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 M. Mohajjel et al.

basic blocks that are on the worst-case path. However, other paths may exist which
have a WCET equal (or nearly equal) to the WCET of the worst-case path. In such
cases, optimizing one worst-case path not only does not reduce the whole WCET of the
program, but also probably increases it because of increasing the execution time of the
other paths. This happens when there are conditional jumps in the worst-case paths
in which their taken and not-taken branch paths have equal or nearly equal execution
time. In these cases, hyperblock formation by merging those paths can reduce the
WCET. To illustrate this, we provide an example.

Fig. 2(a) shows an example program in which the alternative paths have equal ex-
ecution time. The CFG of the program is shown in Fig. 2(c). Fig. 2(b) denotes how
variables are mapped to the registers and Fig. 2(d) shows the machine instructions
after compiling the code of Fig. 2(a). The basic blocks’ instructions are separated by
the horizontal lines. The basic block scheduling of these instructions is shown in Fig.
2(e). It should be noted that in this paper (just like the previous works [Lokuciejew-
ski et al. 2010; Yan and Zhang 2008]) we do not address the problem of instruction
scheduling (e.g., the internal instructions of a basic block) and we intend to just focus
on block formation. Therefore, in this example we have assumed that to overcome the
complexity of global scheduling (which is almost infeasible due to the huge compilation
time), all block formation methods (e.g., superblock and hyperblock formation) are us-
ing an optimal local scheduler for scheduling the instructions within blocks. We have
also assumed that such scheduler exists and can be implemented using the techniques
like the one in [Wilken et al. 2000] (Indeed, we have implemented such an optimal
scheduler for our studies; nevertheless, as it is beyond the scope of this article we do
not address this issue).

We assumed that in this example the processor has two ALUs, one memory unit and
one branch unit. In the table of Fig. 2(e), the numbers in the leftmost column show
the time in cycles and the number in each cell shows the instruction that is executed
at the corresponding time slot in the corresponding functional unit. The empty cells
show that the corresponding functional units are idle. The WCET of the example basic
block scheduling as is shown in the following expression is calculated by adding the
WCET of BB1, MAX(WCET(BB2),WCET(BB3)) (as either BB2 or BB3 is executed and
not both of them) and the WCET of BB4.

WCET(Program)=WCET(BB1)+MAX(WCET(BB2),WCET(BB3))+WCET(BB4)
=4+MAX(5,5)+2=11 cycles

Fig. 3 depicts superblock formation and scheduling of the example program. The
figure shows that forming superblock on each branch path of the jump increases the
execution time of the other branch path and hence increases the overall WCET. In Fig.
3(a) two superblocks are formed which are specified by dashed line. In this example,
forming superblocks causes the WCET of the program to increase by one cycle.

As mentioned earlier, because of the complexity of global scheduling techniques, su-
perblock formation uses a local optimal scheduler for scheduling instructions whithin
superblocks [Lokuciejewski et al. 2010]. Thus in Fig. 3(c) the scheduling of superblocks
SB1 and SB2 are locally optimized. For example, assume that instead of the schedule
of Fig. 3(c), we scheduled instructions 1-3 earlier than the other instructions. Then
As it is depicted in Fig. 4 the execution time of the superblock SB1 would be 7 cy-
cles. However, it can be seen from Fig. 3(c) that the execution time of its schedule is
6 cycles, which means that if we scheduled instructions 1-3 earlier than the other in-
structions, we would have a non-optimal schedule. Indeed, the CFG of the program has
two possible execution paths, SB1 and SB1-SB2. Therefore, to calculate the WCET of
the program we should consider the maximum of the execution time of these paths.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:7

AA:1

 coff = 0.5 * n;
coff = coff*coff;
if (coff > 1)
 j=(c*k+3)*b;
else
 j=(d*k+3)*b;
out1=k*coff;
out2=j*out1;

(a) Program Code

Var Reg
n R1

coff R2
b R3

d,c R4
k R5
j R6

out1 R7
out2 R8

(a) Program code

1 ld R1,(n)
2 multf R2,0.5,R1
3 multf R2,R8,R2
4 blt R2,1,L1
5 ld R3,(b)
6 ld R4,(c)
7 ld R5,(k)
8 multf R6,R4,R5
9 addf R6,R6,3
10 multf R6,R6,R3
11 j L2
12 L1: ld R3,(b)
13 ld R4,(d)
14 ld R5,(k)
15 multf R6,R4,R5
16 addf R6,R6,3
17 multf R6,R6,R3
18 L2: multf R7,R6,R2
19 multf R8,R4,R2
20 L2’: multf R7,R6,R2
21 multf R8,R4,R2

(c) Control Flow Graph (d) Instructions

 Mem Br ALU1 ALU2

BB1

1 1
2 2
3 3
4 4

BB2
1 6
2 7
3 5 8
4 9
5 11 10

BB3

1 13
2 14
3 12 15
4 16
5 17

BB4

1 16

2 17

coff = 0.5 * n;
coff = coff * coff;
if (coff > 1)
 j=(c*k+3)*b;
else
 j=(d*k+3)*b;
out1=j*coff;
out2=b*coff;

(e) Basic block Scheduling

Fig. 1. Basic block scheduling

(b) Regs

e12

e34e24

e13

BB2

BB4

BB3

BB1

(c) Control Flow Graph

1 ld R1,(n)
2 (BB1) multf R2,0.5,R1
3 multf R2,R8,R2
4 blt R2,1,L1
5 ld R3,(b)
6 ld R4,(c)
7 ld R5,(k)
8 (BB2) multf R6,R4,R5
9 addf R6,R6,3
10 multf R6,R6,R3
11 j L2
12 L1: ld R3,(b)
13 ld R4,(d)
14 (BB3) ld R5,(k)
15 multf R6,R4,R5
16 addf R6,R6,3
17 multf R6,R6,R3
18 L2: multf R7,R5,R4
19 (BB4) multf R8,R7,R6

 (d) Instructions

 Mem Br ALU1 ALU2

BB1

1 1

2 2

3 3

4 4

BB2

1 6

2 7

3 5 8

4 9

5 11 10

BB3

1 13

2 14

3 12 15

4 16

5 17

BB4

1 18

2 19

(e) Schedule Table

Fig. 1: Basicblock Scheduling

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 2: Basic block Scheduling.

The execution time of the path SB1 can be obtained from the scheduling table of Fig.
3(b). The execution time of the path SB1-SB2 is the sum of the execution time of SB1
when the program flow leaves SB1 through the edge e13 and the execution time of SB2.
Therefore, the WCET of the program after superblock formation is calculated by the
following expression:

WCET(Program)=MAX(WCET(SB1),WCET(SB1-SB2))
=MAX(6,6+6)=12 cycles

In contrast to superblock formation, hyperblock formation can increase compiler op-
timization opportunity and can decrease WCET by merging two branch paths of a
jump. Fig. 5 shows in our example the hyperblock scheduling decreases WCET by
one cycle compared to basic block scheduling. In this example, the hyperblock HB1 is
formed by merging all the basic blocks. The predicated code of HB1 is shown in Fig.
5(b) and the scheduling is shown in Fig. 5(c).

Although the hyperblock formation has several benefits, it must be used consciously.
This is because hyperblock formation increases the number of instructions that must
be executed in parallel and due to the lack of hardware resources (esp. issue-width)
it might increase (worst-case) execution time. In the next subsection, we present the
proposed hyperblock formation algorithm for WCET reduction.

3.3. Hyperblock Formation Algorithm
The proposed algorithm is shown in Algorithm 1. Each iteration of the algorithm con-
sists of the following steps:

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 M. Mohajjel et al.

AA:1

e34

e13

e24

e12

BB2

BB4

BB3

BB1

BB4’

SB1

SB2

(a) Control Flow Graph

1 ld R1,(n)
2 multf R2,0.5,R1
3 (BB1) multf R2,R8,R2
4 blt R2,1,L1
5 ld R3,(b)
6 ld R4,(c)
7 ld R5,(k)
8 (BB2) multf R6,R4,R5
9 addf R6,R6,3
10 multf R6,R6,R3
11 j L2
12 L1: ld R3,(b)
13 ld R4,(d)
14 (BB3) ld R5,(k)
15 multf R6,R4,R5
16 addf R6,R6,3
17 multf R6,R6,R3
18 L2: multf R7,R5,R4
19 (BB4) multf R8,R7,R6
20 L2’: multf R7,R5,R4
21 (BB4’) multf R8,R7,R6

 (b) Instructions

 Mem Br ALU1 ALU2
 SB1

1 6
2 7
3 1 18 8
4 5 9 2
5 10 3
6 4 19

SB2
1 13
2 14
3 12 15 20
4 16
5 17
6 21
 (c) Schedule Table

Fig. 1: Superblock Scheduling

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 3: Superblock Scheduling.

 Mem Br ALU1 ALU2
 SB1

1 1
2 6 2
3 7 3
4 5 4 8 19
5 9
6 10
7 20
 Fig. 4: Non-Optimal Superblock Scheduling Example.

(1) Timing Analysis. In this step, the WCET of the program and the code blocks that
are in the worst-case paths are determined (Line 2). Since the worst-case paths
may change after each block formation, timing analysis is conducted in each itera-
tion of the algorithm. We provide the details of this step in Section 3.5.

(2) Block Selection. After timing analysis and determining the critical blocks, the CFG
of the program is traversed from the first block on the worst-case paths and blocks
are selected according to their types for hyperblock formation (Line 3-33). We illus-
trate the details of this step in Section 3.4.

(3) Block Merging. In this step, blocks that are selected in the previous step are merged
to form a hyperblock (Line 34). To merge selected blocks that are on different paths,
predicated execution is exploited. Moreover, to preserve the semantics of the pro-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:9

AA:1

e12

e34e24

e13

BB2

BB4

BB3

BB1

HB1

(a) Control Flow Graph

1 ld R1, (n)
2 multf R8, 0.5 , R1
3 multf R8, R8 , R8
4 plt R8,1, p1
5 ld R2,(b)
6 ld R3,(c) p1
7 ld R3,(d) !p1
8 ld R11,(K)
9 mult R4,R3,R11
10 add R4,R4,R2
11 mult R4,R4,3
12 multf R9,R11,R8
13 multf R10,R9,R4

 (b) Predicated Instructions

 Mem Br ALU1 ALU2
HB1

1 1
2 5 2
3 8 3
4 4 12
5 6
6 7
7 9
8 10
9 11
10 13
 (c) Schedule Table

Fig. 1: Hyperblock Scheduling

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 5: Hyperblock Scheduling.

gram, whenever there are side entrances to the hyperblock, the tail duplication
technique (Section 3.1) is used.

These steps are repeated until the program code size reaches the specified code size
limitation or no more basic block can be selected to form new hyperblocks. Then, the
algorithm finishes and the optimized CFG is returned.

3.4. Block Selection
As mentioned earlier, in the block selection step (Algorithm 1, Line 3-33), basic blocks
are selected based on their types to form hyperblocks. We classify basic blocks into
three types:

— Basic blocks that have an unconditional jump.
— Basic blocks that have a conditional jump and the both of their branch paths (taken

and not-taken) have equal or nearly equal execution time (unbiased conditional
jump). Indeed, we consider a conditional jump as unbiased if the WCET difference
between its branch paths is less than the jump classifying threshold value (JC Thr).

— Basic blocks that have a conditional jump and the WCET difference between their
branch paths is more than JC Thr.

The block selection step starts from the first critical basic block that has not been
checked previously (Line 3) and in each iteration of the inner loop a basic block is
added to the set of selected blocks, if it can be merged with the previously selected
blocks (Line 5 and 6). Then, according to the type of the current block, the algorithm
chooses a block for the next iteration (Line 7-29). If the current block does not have
any conditional jump, the algorithm chooses the next block in the worst-case path to
be checked in the next iteration (Line 7 and 8). This also is done for the blocks with
biased conditional jumps (Line 9 and 10).
However, for the blocks with unbiased conditional jumps, at first, if possible, a tempo-
rary block is formed by merging both of its branch paths (Line 12 and 13) and then If
the WCET is reduced by this block formation, all the blocks between the current block
and its immediate post-dominator block (Section 3.1) are added to the set of selected

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 M. Mohajjel et al.

ALGORITHM 1: Hyperblock formation for WCET reduction
Input: Initial CFG (CFG), and Code Size limitation (CS Limit)
Output: Optimized CFG

1 do
2 [Critical Blocks, WCET]← Timing Analyze (CFG);
3 Selected Blocks← ∅ ;
4 b← Get First Basicblock(Critical Blocks); // the first critical block that has not

been checked previously

5 repeat
6 if b can be merged with Selected Blocks then
7 Add(Selected Blocks, b);
8 if b has no conditional jump then
9 b← Get Next Basicblock(Critical Blocks);

10 else if b has biased conditional jump then
11 b← Get Next Basicblock(Critical Blocks);
12 else // unbiased conditional jump

13 if two branches of b can be merged together then
14 tCFG←Make Temporal Block(b.blocks of branches, CFG);
15 W ← Timing Analyze (tCFG);
16 if W ≤WCET then
17 Add(Selected Blocks, b.blocks of branches);
18 b← Get Next Basicblock(Critical Blocks);
19 continue;
20 end
21 end
22 if one of the branches is longer than the other and its blocks can be merged

together then
23 tCFG←Make Temporal Block(b.blocks of longer branch, CFG);
24 W ← Timing Analyze (tCFG);
25 if W ≤WCET then
26 Add(Selected Blocks, b.blocks of longer branch);
27 b← Get Next Basicblock(Critical Blocks);
28 continue;
29 end
30 end
31 break;
32 end
33 else
34 break;
35 end
36 until no new blocks can be selected;
37 CFG← Block Merging(CFG, Selected Blocks);
38 while Selected Blocks is not empty & CFG.CS < CS Limit;
39 return CFG;

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:11

blocks and the next critical block is selected to be checked in the next iteration (Line
14-18). Otherwise, if one of the branch paths has a higher WCET than the other and its
basic blocks can be merged together, the algorithm forms a temporary block over this
branch path (Line 20 and 21). If this latter block formation reduces WCET (Line 22),
the blocks on this branch path are added to the set of selected blocks and the next criti-
cal block is selected to be checked in the next iteration (Line 23-26). Otherwise, if none
of the mentioned block formations reduces the WCET, the block selection step finishes
for this iteration of the algorithm and the set of the previously selected blocks (if any
block is selected) are passed to the next step (i.e. block merging) to form a new hyper-
block. The block selection step also finishes when the current block cannot be merged
by the previously selected blocks. This situation occurs when the current block is in
a loop body and the previously selected blocks are outside of the loop or vice versa. It
should be noted that by temporarily block formation and checking the obtained WCET,
we ensure that the WCET is not increased in any of the iterations of the algorithm.

Two issues must be explained about the proposed algorithm:

— As we mentioned previously, conditional jumps for which the WCET difference be-
tween their branch paths is less than JC Thr are considered as unbiased. For un-
biased conditional jumps, in addition to block formation on the longest branch path,
block formation by merging the non-longest branch path is also checked. This is
because, when we have an unbiased conditional jump, if we do not merge the non-
longest branch path with the longest one in the block formation, it is possible that
the WCET of the non-longest branch path increases (Section 3.2) thereby increasing
the whole WCET. However, when the WCET difference between the branch paths
is high (biased conditional jumps), block formation on the longest branch path can
achieve more WCET reduction as compared to block formation by merging both the
branch paths.

— Changing the value of JC Thr impacts the quality of the proposed algorithm. On
one hand, by setting the value of JC Thr to a small number (e.g. 1 cycle), many con-
ditional jumps are considered as biased and hence the effect of utilizing predicated
execution is only checked for a small number of conditional jumps. This reduces
the number of times that the timing analysis is conducted to check the impact of the
predicated execution and hence improves the speed of the proposed algorithm. How-
ever, in this case some optimization opportunities can be missed. On the other hand,
by setting the threshold value to a large number (e.g. 100 cycles) many conditional
jumps are considered as unbiased and hence the effect of utilizing predicated exe-
cution is checked for many conditional jumps. This in turn, provides more optimiza-
tion opportunities, however in the expense of having a time-consuming algorithm
(see Section 5.4). It is noteworthy that as our proposed algorithm is executed offline
at design time, we believe it is reasonable to perform the proposed algorithm with
large values for JC Thr to achieve better optimizations for the runtime behavior of
real-time embedded systems.

To further illustrate the algorithm (especially the block selection step) we provide an
example.

Example
Fig. 6(a) shows the CFG of an example program. The highlighted blocks depict the
worst-case paths of the CFG obtained by timing analysis. For this example, we assume
JC Thr is zero. The block selection step starts from BB1. BB1 has an unbiased condi-
tional jump, therefore a temporary block is made over BB1, BB2, BB3, BB4 and then
timing analysis is conducted to examine the impact of this temporary block formation
on the WCET. For this example, the timing analysis shows that this block formation
reduces the WCET. Therefore, BB1, BB2, BB3 and BB4 are added to the set of selected

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 M. Mohajjel et al.

A:3

BB2

BB5

BB4

BB3

BB1

BB7BB6

BB8 BB9

BB10

4 4

5 5

2

22

22

32

4

4

(a) Original CFG

HB1

BB8BB6

BB10’

24

4

8

10

17

(b) CFG After Hyperblock Formation

Fig. 4: Example CFG

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fig. 6: An example of applying the proposed algorithm.

blocks (that will be finally merged into the same hyperblock). The block selection step
continues from the next block in the worst-case path, i.e., BB5 in the example. BB5 has
a biased conditional jump, therefore the next block in the worst-case path (i.e. BB7) is
added to the set of selected blocks. BB7, like BB5, has a biased conditional jump, there-
fore BB9 which is in the worst-case path is added to the set of selected blocks. Finally,
BB10 is added to the set of selected blocks and the block selection step finishes. In
the next step which is block merging, the selected blocks are merged together using
predicated execution and tail-duplication techniques (Sections 3.1) and a hyperblock
is made. For example, as BB10 has side entrances from the blocks that are not in the
previously selected blocks, it is duplicated and its side entrances are retargeted to its
duplicated counterpart, i.e., BB10’. After checking BB10, since there is no more criti-
cal block to be checked in the next iteration, the algorithm finishes. Fig. 6(b) shows the
CFG obtained from hyperblock formation.

3.5. Timing Analysis
The approach which we use for timing analysis is based on the implicit path enumer-
ation technique (IPET) [Li and Malik 1995]. In IPET, relations between the execu-
tion of code blocks and also execution constraints such as loop bounds are modeled
by arithmetic expressions, and then an integer linear programming or constraint pro-
gramming method is used to calculate an upper bound for WCET and to identify the
worst-case path. To model the execution time of a program by arithmetic expressions
we assume that the CFG of the program consists of set B = {bi : 1 ≤ i ≤ N} of blocks
and set E = {eij : bi has out edge to bj} of edges. Also for the sake of uniformity, we
assume one dummy edge connects the last node to the first node. We use the following
constants and variables in the expressions:

— The set of outgoing edges from block bi (Dbi).
— The set of ingoing edges to block bi (Sbi).

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:13

— The number of times the program flow passes through edge eij (Ieij) that is equal to
the number of times block bj is executed just after block bi.

— The weight of edge eij (Weij) that is equal to the WCET of block bi when it is exited
from edge eij .

It should be noted in the original IPET, for each block a unique weight is assumed
that is equal to the worst-case execution time of the block. While assuming one worst-
case execution time for each block is reasonable for the programs that only consist of
basic blocks, it is not reasonable for the programs that contain superblocks or hyper-
blocks. This is because the worst-case execution time of a superblock or hyperblock is
not a single value and depends on the edge that the block is exited from. To solve this
issue, we assumed multiple worst-case execution times for each block and to simplify
the arithmetic expressions, we assign each WCET of the block to its corresponding out-
going edge. The arithmetic expressions that we use to calculate the WCET of programs
are as follows:

— Block equations. For each block an equation must be satisfied which indicates that
the total number of times the program flow enters to the block must be equal to the
total number of times the program flow departs the block:∑

exi∈Sbi

Iexi =
∑

eiy∈Dbi

Ieiy

— Back-edge constraints. For each back-edge the total number of passing through
it (i.e. the total number of loop iterations) must be less than the specified upper
bounds:

Ieij ≤ Upper Bound(eij)

— Execution time expression. To calculate the total execution time of the program, it is
sufficient to multiply the total number of passing through each edge by its weight
(execution time) and then to sum them all up:

ExecT ime =
∑

eij∈E

Ieij ×Weij

These arithmetic expressions consist a model that is solved by an integer linear
programming solver such as CPLEX [Cplex 2007] to find maximum (worst-case) exe-
cution time. It should be noted that by solving the IPET model for the whole program
only one of the worst-case paths is determined. However, the proposed algorithm
needs to know i) other worst-case paths that have exactly the same execution time,
ii) the execution time of the paths that branch out of the worst-case paths in order to
classify conditional jumps as biased and unbiased. To solve these issues, in the timing
analysis step, in addition to the WCET of the whole program, for each conditional
jump existing in the determined worst-case path, the WCET of its branch paths up
to its immediate post-dominator block (Section 3.1) is also calculated using IPET. In
this way, both the above-mentioned issues are solved, and hence biased and unbiased
conditional jumps are identified.

Example
Fig. 7 shows the CFG of expint program [Gustafsson et al. 2010] after hyperblock for-
mation. The number on each edge represents the execution time of the source code
block if it exits from that edge. Maximum iterations of the outer and the inner loops

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 M. Mohajjel et al.

b1

b2

b3

b4

b5

4

9

3

3

41

5

4

Fig. 7: The CFG of expint benchmark after hyperblock formation.

33

42

49

100
e

e

I

I

12 23 24 33 34 42 45 51
(4 9 3 1 3 4 5 4)e e e e e e e eWCET max I I I I I I I I

(a) (b)

(c)

1:

:

:

:

1:

4551

24344245

233334

42122423

5112

5

4

3

2

1

ee

eeee

eee

eeee

ee

IIb

IIIIb

IIIb

IIIIb

IIb

Fig. 8: IPET model for expint benchmark.

are 101 and 50 respectively. The IPET model of expint program is shown in Fig. 8.
Fig. 8(a) shows block equations which indicate that the total number of times the pro-
gram flow enters to each block must be equal to the total number of times the program
flow departs the block. Back-edge constraints are shown in Fig. 8(b). Since the maxi-
mum number of iterations of the inner loop is 50, the total number of passing through
back-edge e33 must be equal or less than 49 (Ie33 ≤ 49). Similarly, since the maximum
number of iterations of the outer loop is 101 the total number of passing through back-
edge e42 must be equal or less than 100 (Ie42 ≤ 100). Finally, the objective function
(maximizing the execution time) is shown in Fig. 8(c). The WCET of the program can
be obtained by solving this model which yields 1674 clock cycles.

The following issues must be considered in the timing analysis technique that we
exploit in the proposed algorithm:

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:15

— To calculate the WCET of the program the WCET of each code block is required. The
WCET of code blocks highly depends on the architectural features of the processor.
As mentioned previously, in this paper, we assume that the target processor is a
VLIW processor with no memory hierarchy. “No memory hierarchy” is a reasonable
assumption as many embedded real-time systems only use one level of memory in
order to provide time-predictable behavior which is important for real-time appli-
cations. Also, to avoid time-predictability problems that pipelining may cause, we
assume that all pipeline timing effects [Engblom and Ermedahl 1999] between code
blocks (e.g. basic block, superblock, and hyperblock) are removed by exploiting the
methods like the one proposed in [Yan and Zhang 2008]. Under these assumptions,
there is no context sensitivity between the code blocks of the program and hence
the WCET of each code block can be obtained independently from the other code
blocks. Therefore, considering these assumptions that make the processor behavior
highly predictable, the timing analysis approach in this subsection which is based on
IPET can derive highly safe upper bounds for the execution time of the programs. It
should be noted that although these assumptions are simple, they are realistic and
indeed many real-time embedded systems are based on them. Moreover, they are
not necessary for our proposed hyperblock formation algorithm. Rather, they are re-
quired only for the timing analysis technique which is exploited in our algorithm. As
we will discuss in Section 3.6 one can use more sophisticated timing analysis tech-
niques to relax these assumptions without requiring any change in our proposed
algorithm. It is noteworthy that, although relaxing the second assumption (i.e. no
pipeline timing effects between code blocks) may decrease actual WCET, in many
cases it does not have considerable effect in WCET reduction because of pessimistic
assumptions required to safely model pipeline timing effects between code blocks.

— To benefit other optimizations from larger blocks, the proposed algorithm is con-
ducted on the intermediate representation (IR) level [Cooper and Torczon 2011] be-
fore many other optimizations. At this level, the exact assembly instructions are
not determined yet so the WCET of the program cannot be calculated precisely. One
solution to this issue is to conduct all remained compilation levels to obtain assem-
bly code. However, because the timing analysis is conducted in each iteration of the
proposed algorithm this leads to high timing overhead. To solve this issue, we use
the length of the longest dependency chain among each block’s IR level instructions
as an estimation of the block’s execution time. It should be noted that we use the
longest dependency chain in each block only to determine worst-case paths in IR
level. For checking that a block formation reduces WCET (Section 3.4) and for the
final evaluation of the proposed algorithm we use the more precise WCET for each
block obtained from its exact assembly code.

3.6. Extending to other processors
As we mentioned previously, the proposed algorithm in addition to VLIW processors
can be exploited for non-VLIW processors that support predicated execution. In this
subsection, we briefly explain how this can be done. Recall from Section 3.3 that the
proposed algorithm consists of three steps: timing analysis, block selection, block merg-
ing. Block selection does not depend on the architecture, because it mainly depends on
the CFG of the program which is independent from architecture. Therefore, we do not
need to change the block selection step when we target non-VLIW processors. To ex-
ploit the proposed algorithm for non-VLIW processors the other two steps must be
modified as follows:

— Timing analysis: The execution time of programs highly depends on the processor
architecture and to obtain a safe and tight upper bound for WCET the architecture

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 M. Mohajjel et al.

OpenIMPACT

Compiler

(Modified)

Elcor

Compiler

Simu

simulator

C

source
Lcode

IR

Rebel

IR

Machine

Description

(MDES)

Loop

bounds Timing

Analyzer

ILP Solver

Fig. 9: The structure of modified Trimaran tool chain

must be considered in the timing analysis. The current timing analyzer that we use
is for VLIW processors. However, fortunately effective timing analyzers have also
been developed for non-VLIW processors (e.g., aiT [AbsInt 2015] and Chronos [Li
et al. 2007]) that can be used in the proposed method. It is noteworthy that as our
main contribution in this paper is not about timing analysis, here we do not address
the details and refer the reader to works on this topic such as [Wilhelm et al. 2008;
Li et al. 2006].

— Block merging: As we mentioned previously this phase is consisted of two steps:
predicated execution and tail duplication. The tail duplication step (Section x) is in-
dependent of the processor architecture and hence it is not necessary to change this
step for other processor architectures. However, the predicated execution step de-
pends on the processor architecture and hence it must be modified. It is noteworthy
that sophisticated compilers such as GCC [Stallman 2015] and LLVM [Lattner and
Adve 2004] provides facilities which can be used to implement predicated execution.

4. EXPERIMENTAL SETUP
To evaluate the proposed algorithm we used Trimaran compiler/simulator infrastruc-
ture [Chakrapani et al. 2005]. Trimaran consists of three tools, front-end compiler
(OpenIMPACT), back-end compiler (Elcor) and a cycle accurate simulator (Simu). The
proposed algorithm was integrated into the compiler OpenIMPACT. To obtain WCET
and worst-case paths, as discussed in Section 3.5, we implemented a timing analyzer
based on IPET and integrated it into Trimaran. The timing analyzer is used in two
different parts of our approach: i) when executing the block formation algorithm and
ii) after back-end compilation in order to calculate the final WCET. Fig. 9 shows the
structure of the modified Trimaran tool chain and Table I shows the parameters of
the target VLIW processor and the proposed algorithm. It is noteworthy that these
parameter values are used for all the experiments except for the experiment where we
examine different issue-widths. For this experiment, we must change the number of
functional units relative to the issue-width.

We used several benchmarks from Mälardalen [Gustafsson et al. 2010] and MiBench
[Guthaus et al. 2001] benchmark suits which have been widely used in previous stud-
ies on embedded real-time systems such as [Whitham and Audsley 2010; Huang et
al. 2014]. Table II shows the benchmarks used in the experiments. It should be noted
that in this paper we consider real-time systems that require time-predictable behav-
ior [Wilhelm et al. 2008]. However, some of the benchmarks in MiBench do not provide

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:17

Table I: Parameters of the target processor and the proposed algorithm

Target
processor

Issue Width 4
Integer Functional Units 1
Floating Point Functional Units 1
Load/Store Units 1
Branch Units 1
Register File Size 32

Proposed
algorithm

Code size Limitation (𝐶𝑆_𝐿𝑖𝑚𝑖𝑡) 40%
Threshold value for classifying
Conditional jumps (𝐽𝐶_𝑇ℎ𝑟) 10

Table II: Benchmarks

Name LOC* Description Source

 basicmath 456 Simple mathematical calculations

MiBench

qsort 55 Quick sort algorithm

susan 2122 Recognizing corners and edges of an image

blowfish 1507 A cryptographic cipher

stringsearch 108 String search

fir 276
Finite impulse response filter (signal processing

algorithms) over a 700 items long sample

Mälardalen

qurt 166 Root computation of quadratic equations

minver 201 Inversion of floating point matrix

janne_complex 64 Nested loop program

compress 508 Data compression program

lcdnum 64 Read ten values, output half to LCD

crc 128
Cyclic redundancy check computation on 40 bytes of

data

ludcmp 147 LU decomposition algorithm

prime 47 Calculates whether numbers are prime

*Lines Of Code

the required time-predictable behavior. Therefore, for some benchmarks (e.g., susan)
we replaced dynamic memory allocations with static ones as dynamic memory allo-
cation is a known source of unpredictable timing behavior. It should be noted that to
provide more comprehensive evaluation of the proposed algorithm we experimented
benchmarks with various sizes (from 47 to 2122 lines of code). Nevertheless, the ex-
perimental results (Section 5.1) show that the proposed algorithm is able to reduce the
WCET of both small (e.g. qurt, crc) and large (e.g. compress, basicmath) benchmarks.

To compare our proposed algorithm with other block formation algorithms proposed
in the previous related works, we also experimented on the following algorithms:

— The superblock based WCET reduction algorithm, which is based on WCET-aware
superblock formation algorithms proposed in [Lokuciejewski et al. 2010] and [Zhao
et al. 2005a]. In this algorithm, similar to the proposed algorithm in each iteration,
at first the worst-case path is determined. Then the blocks on the worst-case path
are selected to form superblocks if it reduces WCET. This algorithm finishes when
no new superblock can be formed or the code size limit is reached. It should be noted

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 M. Mohajjel et al.

that unlike our proposed algorithm, the superblock formation algorithm does not
take advantage of predicated execution.

— The full hyperblock formation algorithm, which is proposed in [Yan and Zhang
2008]. In this algorithm, all of the execution paths are merged together by predi-
cated execution. Unlike our proposed algorithm, in this algorithm merging the exe-
cution paths is conducted without considering and determining worst-case paths.

— Trimaran’s hyperblock formation algorithm that is aimed at reducing ACET. In this
algorithm, at first, the most frequently executed path are determined by profiling
and then by a heuristic approach the path blocks are merged together to form hyper-
blocks [Mahlke et al. 1992]. It should be noted that unlike our proposed algorithm,
this algorithm is focused on ACET and not WCET.

5. RESULTS AND DISCUSSION
In this section, we present the impact of different block formation algorithms on
the WCET, the ACET and the code size of the benchmarks. Moreover, we report the
compile-time overhead of the proposed algorithm and the algorithms from the previ-
ous works.
5.1. WCET
Fig. 10 shows the WCET of the benchmarks obtained from applying different block for-
mation algorithms. The WCETs for each benchmark are normalized to the WCET of
its basic block scheduling (compiling without block formation). The reported results in
Fig. 10 show that the proposed algorithm in most of the cases reduces WCET and in the
others, does not have negative impact on WCET. On average, the proposed algorithm
reduces WCET by 19%, which is a significant improvement over the other algorithms
(8% compared to full hyperblock formation, 12% compared to Trimaran’s hyperblock
formation and 10% compared to superblock formation). In the best case, the proposed
algorithm reduces the WCET of qurt program by 59%. This program consists of a loop
with an unbiased conditional jump. The proposed algorithm removes this jump in-
struction from the body of this loop and hence increases the effectiveness of software
pipelining (Section 3.2) that results in considerable WCET reduction. The full hyper-
block formation algorithm also does the same for qurt program and hence achieves the
same result. However, in the programs for which the predicated execution of the condi-
tional jumps does not provide considerable optimization opportunity (e.g. blowfish and
basicmath) the full hyperblock formation algorithm increases WCET. This is because,
the full hyperblock formation algorithm converts all conditional jump instructions to
predicated counterpart without considering its impact on the WCET. However, in such
cases, the proposed algorithm achieves better results than the full hyperblock forma-
tion algorithm, because the proposed algorithm considers the impact of the predicated
execution on the WCET and converts a conditional jump to the predicated counter-
part if it is beneficial. It is noteworthy that for susan and lcdnum programs, the full
hyperblock formation algorithm is slightly (3% and 1% respectively) better than the
proposed algorithm. This is because in these benchmarks there are some biased jumps
that converting them to predicated ones can give more WCET optimization, however,
the proposed algorithm does not convert them to predicated ones (indeed this depends
on the value of the parameter JC Thr explained in Section 3.4) and misses this opti-
mization. Nevertheless, it must be emphasized that on average (as shown in Fig. 10)
the proposed algorithm is superior to the full hyperblock formation algorithm.

Compared to the superblock formation algorithm, the proposed algorithm achieves
better or at least the same results in all of the programs. This is mainly because the
superblock formation algorithm is not able to reduce the WCET of unbiased conditional

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:19

0.00

0.25

0.50

0.75

1.00

1.25

N
or

m
al

ize
d

W
CE

T

Proposed Full Hyperblock Trimaran Algorithm Superblock

Fig. 10: Worst-Case Execution Time.

jumps as efficiently as the proposed algorithm. However, the proposed algorithm, can
reduce the WCET of these jumps by predicated execution.

Compared to the Trimaran’s hyperblock formation algorithm, the proposed algo-
rithm also achieves better or at least the same results in all of the programs. This is
because the Trimaran’s algorithm can significantly reduce the WCET only in the cases
that the worst-case path is mostly overlapped with the frequently executed path (e.g.
prime). However, in the cases where there is little or no overlap between the worst-
case and the frequently executed paths (e.g. minver), using the Trimaran’s algorithm
can even increase WCET. However, the proposed algorithm is aware of the worst-case
paths and optimizes these paths instead of the frequently executed paths and hence
achieves better WCET reduction.

Fig. 11 shows how WCET changes as the issue-width of the VLIW processor varies.
The results are normalized to the WCET obtained from the basic block scheduling
(i.e. no-block formation) when used for the single-issue case. The figure shows that
the proposed algorithm reduces the WCET even if we reduce the issue-width of the
processor (and even for the single-issue case). This is mainly because many jump in-
structions are removed from the worst-case paths of the programs by the proposed
hyperblock formation. This in turn, eliminates pipeline stalls and hence reduces the
(worst-case) execution time. For the processors with higher issue-width, the proposed
hyperblock formation can achieve even more WCET reduction. This is because hyper-
block formation increases the instruction-level parallelism which can be exploited for
parallel instruction execution when the issue-width of the processor increases. Fig. 11
also shows that in all experimented issue-widths the proposed algorithm is superior to
the other algorithms.

To explore how the optimization ability of the compiler influences the proposed and
the previous algorithms, we examine the algorithms in two cases. In one case, ordinary
performance optimization options of the compiler (e.g., software pipelining, dead block
elimination, constant propagation, etc.) are turned off and in the other case, these op-
timizations are all turned on. Fig. 12 shows the averaged results of the proposed and
the previous algorithms in these two cases. The results are normalized to the basic
block scheduling (i.e., when there is no block formation) in the case the optimizations
are turned off. The figure shows that by turning the optimizations on, all of the algo-
rithms can achieve more WCET reduction (15% to 19%). Moreover, the figure shows
that in both of the cases the proposed algorithm achieves better results than the pre-
vious algorithms and the quality of compiling does not have considerable impact on
the relative effectiveness of the proposed algorithm. It is noteworthy that the safety of

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 M. Mohajjel et al.

0.00

0.25

0.50

0.75

1.00

Single Issue Issue-Width=4 Issue-Widht=8 Issue-Width=16

No
rm

al
ize

d
W

C
ET

Proposed Full Hyperblock Trimaran Algorithm Superblock Basic block

Fig. 11: Impact of changing issue-width.

0.00

0.25

0.50

0.75

1.00

without-optimizations with-optimizations

No
rm

al
ize

d
W

CE
T

Proposed Full Hyperblock Trimaran Superblock Basic block

Fig. 12: Impact of compiler optimizations.

the obtained WCETs for the proposed and the other methods are equal since we used
same method to calculate WCET (Section 3.5).

5.2. ACET
Fig. 13 shows the ACET of the benchmark programs normalized to the ACET of basic
block scheduling. The figure shows that while the full hyperblock formation algorithm
increases ACET by 83% on average, the proposed algorithm has less negative impact
on ACET (35% on average). It is noteworthy that this overhead arises from the lack of
resources (in particular issue-width) to simultaneously execute the multiple paths of
the program.

The ACET results of the proposed method is almost equal to the results of Tri-
maran’s algorithm in the programs where the worst-case path mostly overlaps with
the frequently executed path (e.g. prime). It should be noted that since the Trimaran’s
algorithm does not predict the adverse effects of hyperblock formation on ACET, in
some benchmarks (e.g. susan, lcdnum, minver) it can even increase ACET.

5.3. Code Size
Fig. 14 shows the code size of the benchmarks obtained from applying different block
formation algorithms. The numbers are normalized to the code size of the benchmarks
in the case of basic block scheduling. The results show that the superblock formation
algorithm has the most code size overhead (about 5% on average). This is because in
the superblock formation algorithm, usually more tail duplication is required. Indeed,
since a superblock can include only one path of the program, the number of its side
entrances increases and hence it needs more tail duplications. In contrast to the su-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:21

0.50

1.00

1.50

2.00

N
or

m
al

ize
d

AC
ET

5.50

6.00

Proposed Full Hyperblock Trimaran Algorithm Superblock

∫∫

∫∫

∫∫

Fig. 13: Average-Case Execution Time.

perblock formation algorithm, the proposed algorithm because of using hyperblocks,
can easily include two branch paths of a conditional jump in a hyperblock and obviates
the need for tail duplication. Therefore, the proposed algorithm has considerably less
code size overhead (less than 1% on average) than the superblock formation algorithm.
However, in the programs where the worst-case path has several biased conditional
jumps (e.g. stringsearch) the proposed algorithm, as discussed in Section 3.4, includes
only one branch path and as a result the number of side entrances to the hyperblocks
increases which consequently leads to more tail duplication and code-size growth.

As the Fig. 14 shows the full hyperblock formation algorithm in many cases not only
does not increase the code size but also decreases it. This is because aggressive hy-
perblock formation increases the opportunity of the instruction merging optimization
[Mahlke et al. 1992] that combines two instructions with complementary predicates
into a single instruction. Moreover, the full hyperblock formation algorithm merges all
execution paths of the program into a single path and hence there is no need to use
tail duplication in this algorithm. However, as we mentioned previously in Section 5.1
aggressive merging all execution paths can even increase WCET.

5.4. Compilation Run Time
The compilation run time of the proposed and the other block formation algorithms
were measured on an Intelr Xeonr system (E5-2650, 2.00GHz, 3GB RAM). Table III
shows the measured compilation run times of the algorithms. The table shows that the
proposed algorithm in some programs that have many conditional jumps suffers from
a large compilation run time (e.g. in the worst-case, about 851 minutes for the susan
program). This is because in each iteration of the proposed algorithm we need to pro-
voke the timing analyzer at least one time (Section 3.3) and the timing analyzer uses
linear programming which is known for being very time-consuming, especially when
the input size (in our case, the number of CFG blocks) is large. Nevertheless, as men-
tioned previously in Section 3.4, since this time-consuming compilation is performed
offline at design time, we believe it is beneficial to consume more time at design time
to achieve a better system runtime behavior (more WCET reduction in our case). Some
methods can be used to reduce this compilation time, such as restricting the number
of the iterations of the algorithm, or setting JC Thr value to a small number to reduce
the number of conditional jumps that are considered as unbiased (Section 3.4). How-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 M. Mohajjel et al.

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

N
or

m
al

ize
d

C
od

e
Si

ze

Proposed Full Hyperblock Trimaran Algorithm Superblock

Fig. 14: Code size.

Table III: Compilation Run Time

Benchmark Proposed
Full

Hyperblock
Trimaran Superblcok Basic block

basicmath 7m24s 0m24s 0m24s 1m84s 0m24s

qsort 1m41s 0m14s 0m14s 1m11s 0m14s

susan 851m8s 6m39s 7m14s 82m54s 6m10s

blowfish 96m28s 2m57s 2m48s 17m21s 2m35s

stringsearch 2m15s 0m17s 0m17s 0m43s 0m17s

fir 1m1s 0m13s 0m13s 0m23s 0m13s

qurt 2m17s 0m15s 0m15s 0m39s 0m15s

minver 6m30s 0m19s 0m20s 2m1s 0m20s

janne_complex 1m28s 0m13s 0m13s 0m41s 0m13s

compress 12m26s 0m31s 0m32s 3m51s 0m31s

lcdnum 2m24s 0m13s 0m14s 0m49s 0m14s

crc 2m33s 0m15s 0m15s 1m12s 0m15s

ludcmp 4m6s 0m16s 0m16s 1m17s 0m16s

prime 0m52s 0m13s 0m13s 0m29s 0m13s

ever, the use of these methods comes at the cost of missing some achievable WCET
reduction.

6. CONCLUSION
In this article we proposed a novel block formation method which is more effective
than previous approaches that have addressed the same problem. Indeed, the previous
approaches lay in three different categories:

— The works that use superblocks[Lokuciejewski et al. 2010; Zhao et al. 2005a]. which
means that they do not consider issues like predicated execution, merging of exe-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

A Compile-Time Optimization Method for WCET Reduction 0:23

cution paths, considering the issue-widths of processor, unbiased and biased jumps,
etc., while we have considered hyperblock formation and hence addressed all the
mentioned issues,

— The work that uses full hyperblock formation [Yan and Zhang 2008]. This work does
not involve issues like unbiased and biased jumps, the use of timing analyzer, tail
duplication, issue-widths of processor, finding a path among multiple path branches,
etc., while in the proposed hyperblock formation algorithm we have addressed all
these issues, so that the proposed algorithm achieves more WCET reduction (the
work in [Yan and Zhang 2008] might even increase WCET).

— The work that uses hyperblock formation to reduce ACET [Mahlke et al. 1992].
Evidently WCET is not the main concern for this work and hence it is not suitable
for real-time applications. This work also does not consider issues like unbiased and
biased jumps, the use of timing analyzer, WCET, real-time operation, etc., while in
the proposed hyperblock formation algorithm we have addressed all these issues.

The experimental results showed that the proposed method can significantly reduce
WCET (19% on average) while has considerably less adverse impacts than the other
block formation algorithms on ACET and code size. To extend the proposed method, an
interesting future work is integrating other compile-time optimizations such as loop
unrolling with hyperblock formation aimed at reducing WCET. The other interesting
future work is studying the impacts of block formation algorithms on the processors
that have memory hierarchy.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Mohammad Mesbah of Sharif University of Technology for extracting
the loop bounds of the benchmarks.

REFERENCES
AbsInt 2015. http://www.absint.com/ait/. http://www.absint.com/ait/. (2015). Accessed: 2015-05-29.
Hakan Aydin, Rami Melhem, Daniel Mosse, and Pedro Mejia-Alvarez. 2004. Power-aware schedul-

ing for periodic real-time tasks. Computers, IEEE Transactions on 53, 5 (May 2004), 584–600.
DOI:http://dx.doi.org/10.1109/TC.2004.1275298

LakshmiN. Chakrapani, John Gyllenhaal, Wen-meiW. Hwu, ScottA. Mahlke, KrishnaV. Palem, and Ro-
dricM. Rabbah. 2005. Trimaran: An Infrastructure for Research in Instruction-Level Parallelism. In
Languages and Compilers for High Performance Computing, Rudolf Eigenmann, Zhiyuan Li, and
SamuelP. Midkiff (Eds.). Lecture Notes in Computer Science, Vol. 3602. Springer Berlin Heidelberg,
32–41. DOI:http://dx.doi.org/10.1007/11532378 4

Pohua P. Chang, Scott A. Mahlke, and Wen-Mei W. Hwu. 1991. Using profile information to as-
sist classic code optimizations. Software: Practice and Experience 21, 12 (1991), 1301–1321.
DOI:http://dx.doi.org/10.1002/spe.4380211204

Keith Cooper and Linda Torczon. 2011. Engineering a compiler. Elsevier.
ILOG Cplex. 2007. 11.0 Users manual. Report.
Jakob Engblom and Andreas Ermedahl. 1999. Pipeline timing analysis using a trace-driven simulator. In

Real-Time Computing Systems and Applications, 1999. RTCSA ’99. Sixth International Conference on.
IEEE, 88–95. DOI:http://dx.doi.org/10.1109/RTCSA.1999.811197

Heiok Falk. 2009. WCET-aware register allocation based on graph coloring. In Design Automation Confer-
ence, 2009. DAC ’09. 46th ACM/IEEE. IEEE, 726–731.

Heiko Falk and Jan C. Kleinsorge. 2009. Optimal Static WCET-aware Scratchpad Allocation of Program
Code. In Proceedings of the 46th Annual Design Automation Conference (DAC ’09). ACM, New York, NY,
USA, 732–737. DOI:http://dx.doi.org/10.1145/1629911.1630101

Heiok Falk, Paul Lokuciejewski, and Henrik Theiling. 2006. Design of a WCET-Aware C Com-
piler. In Proceedings of the 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real
Time Multimedia (ESTMED ’06). IEEE Computer Society, Washington, DC, USA, 121–126.
DOI:http://dx.doi.org/10.1109/ESTMED.2006.321284

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

http://dx.doi.org/10.1109/TC.2004.1275298
http://dx.doi.org/10.1007/11532378_4
http://dx.doi.org/10.1002/spe.4380211204
http://dx.doi.org/10.1109/RTCSA.1999.811197
http://dx.doi.org/10.1145/1629911.1630101
http://dx.doi.org/10.1109/ESTMED.2006.321284

0:24 M. Mohajjel et al.

Heiok Falk, Norman Schmitz, and Florian Schmoll. 2011. WCET-aware Register Allocation Based on
Integer-Linear Programming. In Real-Time Systems (ECRTS), 2011 23rd Euromicro Conference on.
IEEE, 13–22. DOI:http://dx.doi.org/10.1109/ECRTS.2011.10

Heiko Falk and Martin Schwarzer. 2006. Loop Nest Splitting for WCET-Optimization and Predictability Im-
provement. In Embedded Systems for Real Time Multimedia, Proceedings of the 2006 IEEE/ACM/IFIP
Workshop on. IEEE, 115–120.

Joseph A. Fisher. 1981. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE Trans. Com-
put. C-30, 7 (1981), 478–490.

Joseph A. Fisher, Paolo Faraboschi, and Clifford Young. 2005. Embedded computing: a VLIW approach to
architecture, compilers and tools. Elsevier.

Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Bjrn Lisper. 2010. The Mlardalen WCET Bench-
marks: Past, Present And Future. In 10th International Workshop on Worst-Case Execution Time Anal-
ysis (WCET 2010), Björn Lisper (Ed.), Vol. 15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 136–
146. The printed version of the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-
3-85403-268-7.

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, and Richard B.
Brown. 2001. MiBench: A free, commercially representative embedded benchmark suite. In Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop on. IEEE, Austin, TX, USA, 3–14.

Jörg Henkel and Sri Parameswaran. 2007. Designing Embedded Processors: A Low Power Perspective.
Springer Publishing Company, Incorporated, New York.

Yazhi Huang, Liang Shi, Jianhua Li, Qingan Li, and C.J. Xue. 2014. WCET-Aware Re-Scheduling
Register Allocation for Real-Time Embedded Systems With Clustered VLIW Architecture. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on 22, 1 (Jan 2014), 168–180.
DOI:http://dx.doi.org/10.1109/TVLSI.2012.2236114

Chris Lattner and Vikram Adve. 2004. LLVM: a compilation framework for lifelong program analysis trans-
formation. In Code Generation and Optimization, 2004. CGO 2004. International Symposium on. 75–86.
DOI:http://dx.doi.org/10.1109/CGO.2004.1281665

Rainer Leupers. 1999. Exploiting Conditional Instructions in Code Generation for Embedded VLIW Proces-
sors. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE ’99). ACM, New
York, NY, USA, Article 23. DOI:http://dx.doi.org/10.1145/307418.307462

Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudury. 2007. Chronos: A Timing An-
alyzer for Embedded Software. Science of Computer Programming 69, 1-3 (2007), 56–67.
http://www.comp.nus.edu.sg/ rpembed/chronos.

Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. 2006. Modeling out-of-order processors for WCET
analysis. Real-Time Systems 34, 3 (2006), 195–227. DOI:http://dx.doi.org/10.1007/s11241-006-9205-5

Yau-Tsun Steven Li and Sharad Malik. 1995. Performance Analysis of Embedded Soft-
ware Using Implicit Path Enumeration. SIGPLAN Not. 30, 11 (Nov. 1995), 88–98.
DOI:http://dx.doi.org/10.1145/216633.216666

Paul Lokuciejewski, Heiko Falk, and Peter Marwedel. 2008a. WCET-driven Cache-based Procedure Position-
ing Optimizations. In Real-Time Systems, 2008. ECRTS ’08. Euromicro Conference on. IEEE, 321–330.
DOI:http://dx.doi.org/10.1109/ECRTS.2008.20

Paul Lokuciejewski, Heiko Falk, Peter Marwedel, and Henrik Theiling. 2008b. WCET-driven, Code-size Crit-
ical Procedure Cloning. In Proceedings of the 11th International Workshop on Software & Compilers for
Embedded Systems (SCOPES ’08). ACM, New York, NY, USA, 21–30. http://dl.acm.org/citation.cfm?id=
1361096.1361100

Paul Lokuciejewski, Fatih Gedikli, Peter Marwedel, and Katharina Morik. 2009. Automatic WCET reduction
by machine learning based heuristics for function inlining. In 3rd Workshop on Statistical and Machine
Learning Approaches to Architectures and Compilation (SMART). 1–15.

Paul Lokuciejewski, Timon Kelter, and Peter Marwedel. 2010. Superblock-Based Source Code Optimizations
for WCET Reduction. In Computer and Information Technology (CIT), 2010 IEEE 10th International
Conference on. IEEE, 1918–1925. DOI:http://dx.doi.org/10.1109/CIT.2010.327

Paul Lokuciejewski and Peter Marwedel. 2009. Combining Worst-Case Timing Models, Loop Unrolling, and
Static Loop Analysis for WCET Minimization. In Real-Time Systems, 2009. ECRTS ’09. 21st Euromicro
Conference on. 35–44. DOI:http://dx.doi.org/10.1109/ECRTS.2009.9

Paul Lokuciejewski and Peter Marwedel. 2010. Worst-case execution time aware compilation techniques for
real-time systems. Springer Science & Business Media.

Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A. Bringmann. 1992. Effective
compiler support for predicated execution using the hyperblock. SIGMICRO Newsl. 23 (1992), 45–54.

Dhiraj K Pradhan. 1996. Fault-tolerant computer system design. Prentice-Hall.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

http://dx.doi.org/10.1109/ECRTS.2011.10
http://dx.doi.org/10.1109/TVLSI.2012.2236114
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1145/307418.307462
http://dx.doi.org/10.1007/s11241-006-9205-5
http://dx.doi.org/10.1145/216633.216666
http://dx.doi.org/10.1109/ECRTS.2008.20
http://dl.acm.org/citation.cfm?id=1361096.1361100
http://dl.acm.org/citation.cfm?id=1361096.1361100
http://dx.doi.org/10.1109/CIT.2010.327
http://dx.doi.org/10.1109/ECRTS.2009.9

A Compile-Time Optimization Method for WCET Reduction 0:25

Peter Puschner. 2002. Is worst-case execution-time analysis a non-problem?-Towards new software and
hardware architecture. In Proc. 2nd Euromicro International Workshop on WCET Analysis.

Martin Schoberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie Garside, Kees
Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Alexan-
der Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch, Wolfgang Puffitsch, Pe-
ter Puschner, Andr Rocha, Cludio Silva, Jens Spars, and Alessandro Tocchi. 2015. T-CREST: Time-
predictable multi-core architecture for embedded systems. Journal of Systems Architecture 0 (2015).

Martin Schoberl, Peter Puschner, and Raimund Kirner. 2009. Single-path programming on a chip-
multiprocessor system. In In: Procs of the Workshop on Reconciling Performance with Predictability
(RePP).

Martin Schoberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, Christian W Probst, Sven Karls-
son, Tommy Thorn, and others. 2011. Towards a time-predictable dual-issue microprocessor: The Pat-
mos approach. In Bringing Theory to Practice: Predictability and Performance in Embedded Systems,
Vol. 18. 11–21.

David Seal. 2000. ARM Architecture Reference Manual. Addison-Wesley Longman Publishing Co., Inc.
Richard M. Stallman. 2015. Using the GNU Compiler Collection. Free Software Foundation. https://gcc.gnu.

org/onlinedocs/gcc-5.2.0/gcc.pdf
Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. 2005. WCET centric data allocation to

scratchpad memory. In Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International. 10
pp.–232. DOI:http://dx.doi.org/10.1109/RTSS.2005.45

Jack Whitham and Neil C. Audsley. 2010. Time-Predictable Out-of-Order Execution for Hard
Real-Time Systems. Computers, IEEE Transactions on 59, 9 (Sept 2010), 1210–1223.
DOI:http://dx.doi.org/10.1109/TC.2010.109

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. 2008. The Worst-case Execution-time Prob-
lem&Mdash;Overview of Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst. 7, 3 (2008),
36:1–36:53.

Kent Wilken, Jack Liu, and Mark Heffernan. 2000. Optimal Instruction Scheduling Using Integer Program-
ming. SIGPLAN Not. 35, 5 (2000), 121–133.

Hui Wu, Jingling Xue, and Sri Parameswaran. 2010. Optimal WCET-aware Code Selection for Scratchpad
Memory. In Proceedings of the Tenth ACM International Conference on Embedded Software. ACM, 59–
68.

Jun Yan and Wei Zhang. 2008. A time-predictable VLIW processor and its compiler support. Real-Time
Systems 38, 1 (2008), 67–84.

Wankang Zhao, William Kreahling, David Whalley, Christopher Healy, and Frank Mueller. 2005a. Improv-
ing WCET by optimizing worst-case paths. In Real Time and Embedded Technology and Applications
Symposium, 2005. RTAS 2005. 11th IEEE. 138–147.

Wankang Zhao, David Whalley, Christopher Healy, and Frank Mueller. 2005b. Improving WCET by Apply-
ing a WC Code-positioning Optimization. ACM Trans. Archit. Code Optim. 2, 4 (2005), 335–365.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 0.

https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc.pdf
http://dx.doi.org/10.1109/RTSS.2005.45
http://dx.doi.org/10.1109/TC.2010.109

	Introduction
	RELATED WORK
	PROPOSED METHOD
	Background
	Motivation
	Hyperblock Formation Algorithm
	Block Selection
	Timing Analysis
	Extending to other processors

	EXPERIMENTAL SETUP
	RESULTS AND DISCUSSION
	WCET
	ACET
	Code Size
	Compilation Run Time

	CONCLUSION

