
Extended User Interrupts (xUI): Fast and Flexible
Notification without Polling

Berk Aydogmus
Purdue University
West Lafayette, USA

Linsong Guo
UC San Diego
La Jolla, USA

Danial Zuberi
UC San Diego
La Jolla, USA

Tal Garfinkel
UC San Diego
La Jolla, USA

Dean Tullsen
UC San Diego
La Jolla, USA

Amy Ousterhout
UC San Diego
La Jolla, USA

Kazem Taram
Purdue University
West Lafayette, USA

Abstract
Extended user interrupts (xUI) is a set of processor exten-
sions that builds on Intel’s UIPI model of user interrupts,
for enhanced performance and flexibility. This paper de-
constructs Intel’s current UIPI design through analysis and
measurement, and uses this to develop an accurate model
of its timing. It then introduces four novel enhancements to
user interrupts: tracked interrupts, hardware safepoints, a
kernel bypass timer, and interrupt forwarding. xUI is mod-
eled in gem5 simulation and evaluated on three use cases
– preemption in a high-performance user-level runtime, IO
notification in a layer3 router using DPDK, and IO notifica-
tion in a synthetic workload with a streaming accelerator
modeled after Intel’s Data Streaming Accelerator. This work
shows that xUI offers the performance of shared memory
polling with the efficiency of asynchronous notification.

CCS Concepts: • Computer systems organization →
Pipeline computing; Processors and memory architec-
tures; • Hardware→ Networking hardware.

Keywords: Interrupt, User Space, Preemption, Processor Ar-
chitecture

ACM Reference Format:
Berk Aydogmus, Linsong Guo, Danial Zuberi, Tal Garfinkel, Dean
Tullsen, Amy Ousterhout, and Kazem Taram. 2025. Extended User
Interrupts (xUI): Fast and Flexible Notification without Polling. In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
ASPLOS ’25, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716028

Volume 2 (ASPLOS ’25), March 30–April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3676641.3716028

1 Introduction
With the rise of language-level concurrency and kernel by-
pass interfaces, user-level runtimes are increasingly respon-
sible for tasks that once belonged to the OS—such as pre-
emption, synchronization, and scheduling (CPU and IO).

User-level threads, goroutines (Go), and coroutines (C++)
have allowed data center applications to scale to millions
of concurrent requests [17, 60] and support microsecond
timescales [26, 37, 48, 52] by avoiding the high cost of kernel
threads. This has increasingly shifted responsibility for CPU
scheduling to user-level runtimes. Similarly, kernel-bypass
interfaces such as DPDK [1] and SPDK [9] achieve high
performance I/O at microsecond timescales by bypassing the
kernel, shifting IO scheduling to user level.
However, user-level runtimes are missing a key support

that operating systems rely on to coordinate these activities—
the interrupt system. The interrupt system delivers low-
latency asynchronous notifications from devices, cores (IPIs),
and timers. Asynchronous notification minimizes latency, as
it immediately changes the control flow on the receiving
core, and maximizes efficiency, because it doesn’t require the
receiver to waste cycles polling for notifications.
Without this support, user-level runtimes are forced to

rely on expensive OS interfaces, or fall back to shared mem-
ory polling that trades poor efficiency for lower latencies
and higher throughput [29]. This translates directly into
inefficiencies and functional limitations at user level.

For example, preemption is essential for enabling precise
control over scheduling. In server workloads, it can bound
tail latency and increase useful throughput by mitigating
head-of-line-blocking [37, 61], and it is mandatory for run-
ning untrusted code in multi-tenant settings such as server-
less edge platforms [21, 59]. However, many programming
languages and high-performance runtimes don’t support

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3676641.3716028
https://doi.org/10.1145/3676641.3716028
https://doi.org/10.1145/3676641.3716028

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

preemption [48, 52], limit preemption frequency (e.g. Go
preempts every 10ms), or will not preempt loops [6, 7, 10]
due to the high and unpredictable overheads that current
user-level timing and notification mechanisms impose.

Next, while kernel bypass interfaces are increasingly pop-
ular for accessing high-performance network and storage
(e.g., ultra-low latency (ULL) flash and NVMe), the only way
to receive the microsecond-scale notifications these devices
deliver is to poll. This can waste significant cycles and en-
ergy as cores busy-spin [29]. It also scales poorly, as each
queue being polled burns an additional cache line, and pro-
cessors offer no way to idle (e.g. mwait) on more than a single
queue. The growing use of specialized accelerators [63] (e.g.,
DSA [42], QAT [33]) will only make this more challenging.

Other use cases where low-cost notifications would enable
more efficient implementations include IPC notifications,
syncing changes to shared data structures, and processing
real-time tracing events.
Intel’s recently released user-level interprocessor inter-

rupts (UIPI) offer a promising starting point for bringing
interrupt support to user space. For example, it offers signif-
icant benefits for implementing preemption with low, pre-
dictable overheads [25, 35, 44]. However, our in-depth analy-
sis of its design and implementation (§3) and exploration of
existing user-level notification mechanisms (§2) reveal sig-
nificant limitations in performance, precision, and support
for diverse notification types (i.e. timers and devices).
To overcome these limitations, we present xUI, a set of

processor extensions that build on UIPI to meet the needs of
user-level runtimes. xUI offers four key capabilities: tracked-
interrupts (§4.2)—reduce interrupt delivery overhead by 3x-
9x vs. UIPI—closing the performance gap between interrupts
andmemory-based notification (polling); hardware safepoints
(§4.4)—offer precise control over where interrupts are de-
livered at near zero cost, reconciling the tension between
interrupts and precise garbage collection; the kernel bypass
timer (§4.3)—enables low-cost user-space timers, eliminat-
ing the need for expensive OS-based timers, or dedicating
cores to polling high precision counters; interrupt-forwarding
(§4.5)—extends interrupt routing, allowing devices to send
interrupts to user-level threads.
We simulate xUI (and UIPI) in gem5 (§5); and evaluate

its performance for preemption and I/O notification in sev-
eral high-performance workloads (§6), including: serving
database requests with RocksDB on Aspen [30]—a high-
performance user-level runtime; routing with l3fwd [19]—a
DPDK based layer 3 router; and offloading with a simulated
streaming accelerator based on Intel’s DSA [42].

We find using xUI instead of UIPI for preemption in Aspen
improves RocksDB throughput by 10% (§6.2.1), and elimi-
nates the need to waste core(s) to provide high precision
timer(s) (§6.1). We find using xUI for IO notification in l3fwd
achieves the same responsiveness (latency) as busy spinning,
while significantly improving efficiency. For example, at 40%

load, xUI reduces CPU consumption by 45% compared to
busy spinning (§6.2.2). We observe similar efficiency gains us-
ing xUI for IO notification with simulated DSA; for example,
at 50K IPOS (20𝜇s average request latency), xUI maintains
the same responsiveness as busy spinning while incurring
negligible CPU overhead (§6.2.3).

2 Limitations of User-Level Notification
Current options for asynchronous notification and timing
at user level have significant limitations, especially for high-
performance applications.
Signals: high overheads, imprecise. Signals are the only
option for asynchronous notification on most systems at
user level today. Like interrupts, signals are free when no
events occur, but are orders of magnitude more expensive
than polling when events do arrive, making them unsuitable
for high-performance applications.

For example, we measured the impact of signal delivery on
some common benchmarks (e.g., linpack2, base64 encoding)
and found each signal imposed roughly 2.4 𝜇s of overhead
at 2 GHz (without KPTI). About 1.4 𝜇s of this comes from
OS context switch overheads. The remainder is mostly due
to added branch mispredictions and cache misses caused by
contention with the kernel signal-handling code.

This is expensive enough to make signals a impractical for
preemption and IO notification in high-performance applica-
tions, where requests arrive on a microsecond timescale [29,
30, 34], as signal delivery imposes a significant tax on through-
put. Even in common server workloads where requests are
often in the 100s of microseconds or less [53, 56], they are
still a noticeable source of overhead.

Signals are also imprecise, that is, they change control flow
at arbitrary points in the receiver code. This is a problem
for runtimes that rely on precise garbage collection (e.g.,
most Java and .NET implementations), as precise GCs rely
on stackmaps. Stackmaps are metadata generated at compile
time that tell the GCwhich stack elements are pointers—each
map is valid only for a particular safepoint [45] in program
code. Thus, if a thread is being preempted somewhere other
than a safepoint, a GC cannot garbage collect it, as it has no
way of identifying which objects that thread can reference.

In recent years, Go developed a unique solution to this
problem bymoving fromprecise GC to a hybrid approach [10]
that uses conservative GC for the most recent stack frame,
and precise GC for the rest. Unfortunately, this is not a solu-
tion for most runtimes, as moving garbage collectors—which
are quite popular—modify pointers on the stack [36]. Thus,
they cannot tolerate the imprecision of conservative GC.
Polling: unpredictable, inefficient, unscalable. User-
level notification can also be implemented by polling a vari-
able in shared memory. When polling, each negative check
is quite cheap (load with an L1 cache hit, and a correctly
predicted branch), and each notification is still relatively

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

cheap (load with an L2 cache miss, and a likely mispredicted
branch), thus polling can support both low latency and high
bandwidth notification. Polling is also precise, as a program-
mer or compiler has total control over where polling occurs.
However, while signal costs scale in the number of notifica-
tions arriving, polling costs scale in the number of checks
being performed, and it is hard to avoid wasting significant
cycles when no notifications are pending.

For example, polling is a common way to implement pre-
emption in a programming language. To implement this, the
compiler adds instrumentation that polls a shared variable
at every function entry point and loop back-edge, ensur-
ing a thread will yield, regardless of control flow. Unfortu-
nately, polling overheads can be quite high and workload-
dependent [30], as even a simple check can be quite expen-
sive in tight loops.
To avoid this, Go did not preempt loops for its first ten

years. Instead, it required developers to insert explicit calls
to runtime.Gosched() (the scheduler) in loops when nec-
essary. However, this was fragile, leading to hard-to-debug
slowdowns and program freezes [10]when overlooked.When
the Go team explored mitigating this by adding checks to
loops, they found it slowed down programs by a geomean
of roughly 7%, and in the worst case, by up to 96% [7].
Similarly, we measured the cost of preemption in Wasm-

time, a WebAssembly runtime used to run serverless applica-
tions by Fastly, Shopify, Microsoft, etc. that relies on polling
for preemption. On some common benchmarks containing
tight loops or short functions (e.g., linpack2 [18]), we found it
imposed slowdowns of up to 50%. Unsurprisingly, when Java
decided to add support for virtual threads in recent years [6],
they decided not to support loop preemption.

Polling for IO poses its own set of challenges. As Golestani
et al., observed “you can’t always spin to win” [29]. Busy
spinning tends to waste significant cycles because I/O is un-
predictable, and when I/O events are not arriving, the core
is wasted. Polling also scales poorly as overheads increase
linearly with the number of queues being polled, and each
one burns a cache line. Wasting cycles translate to energy
inefficiency, and the primary tool that processors offer to
mitigate this cost (mwait and its equivalents), only works
with a single queue. Less frequent polling can reduce these
costs, but this forces a trade-off between overhead and re-
sponsiveness. In user-level runtimes, periodic polling is also
messy because it becomes intertwined with scheduling, i.e.,
one can’t poll when a user thread is running.
Timers: expensive and complex. Timers enable many
scheduling tasks including preemption, periodic device polling,
and synchronization timeouts. Unfortunately, user-level run-
times have limited options for microsecond-scale timing.
Hardware timers are hidden behind expensive OS interfaces
that rely on signals (setitimer(), timer_create()) and
system calls (nanosleep(),select()) for notification.

In the absence of direct access to efficient hardware timers,
user-level runtimes [7, 30, 44, 54] implementing threads often
designate one kernel thread (core) to act as a timer, and
notify other kernel threads when they need to be preempted,
either through signals, shared memory, and more recently
UIPI. Unfortunately, OS overheads can add up quite quickly
for the timer thread (see Figure 6). In higher performance
systems [30, 34, 44] it’s not uncommon to implement timer
thread(s) by busy spinning on a high-precision timer (rdtsc),
burning the entire core.
UIPI: more expensive than polling, imprecise, narrow.
Receiving a notification with UIPI is roughly 3x-5x cheaper
than signals— roughly 2800 cycles vs. 600-900 cycles on our
Saphire Rapids processor. Unfortunately, UIPI is still roughly
6x-9x slower than memory-based notifications, which are
roughly 100 cycles.

The gap between UIPI and polling overheads will increase
in future processors due to the growing size of speculation
windows. To wit–the pipeline flush induced by UIPI is a
significant source of overhead (§ 3.5). As the number of in-
flight instructions in future processors continues to increase,
this will become more expensive. This trend will also hurt
future polling performance, as the flush to handle branch
mispredictions becomes more expensive.
UIPI is also imprecise, similar to signals, thus it does not

play well with precise GC. Finally, UIPI only supports a
narrow subset of the features APICs offer, i.e., no device
interrupts or timer interrupts, which limits its usefulness.
Taken together, this makes UIPI a useful tool for some sit-
uations [25, 30, 35, 44], but still quite far from a substitute
for all the interrupt system offers, and certainly not a viable
replacement for polling in high-performance systems.

3 Characterizing Intel UIPI
Here, we provide the first in-depth analysis of Intel UIPI by
reverse engineering its microarchitectural details. We discuss
how xUI builds on this in section 4.

3.1 UIPI Overview
User interprocessor interrupt (UIPI) support was recently
introduced by Intel in their Sapphire Rapids processors.1 UIPI
allows IPIs to be sent directly from one kernel thread (e.g.
pthread) to another at user level, avoiding the context-switch
overheads of signals.

There are several challenges to enabling user-level IPIs on
existing hardware:
Adding access control. Access control is necessary to
prevent threads from sending IPIs to other non-consenting
threads. UIPI delegates this task to the kernel via a new hard-
ware interface—programmed through MSRs and in-memory

1User interrupts have been shipping in both server and consumer class
chips since Fall 2024 (e.g., Grand Rapids, Sierra Forest, Grand Ridge, Arrow
Lake, Lunar Lake) [32].

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

Table 1. User Posted Interrupt Descriptor (UPID) Fields.

Name Description Bit Range

Outstanding Notification (ON) if notification is outstanding for one or more UIs 0:0
Suppressed Notification (SN) if the senders should avoid sending a notification 1:1
Notification Vector (NV) the interrupt vector on which the UI should be sent 23:16
Notification Destination (NDST) APICID of the core this thread running on 63:32
Posted Interrupt Requests (PIR) interrupts that have been posted to this thread 127:64

tables—called the User Interrupt Target Table (UITT). A UITT
is a per-process table that specifies which other threads a pro-
cess (and all of its threads) can send UIPIs to. At a high level,
each entry is a tuple ⟨𝑈𝑃𝐼𝐷, 𝑣𝑒𝑐𝑡𝑜𝑟 ⟩—where UPID (User
Posted Interrupt Descriptor) is a thread-specific, in-memory
descriptor. The presence of a UPID pointer in the UITT of
a process implicitly grants it permission to send interrupts
to the thread associated with that UPID. The kernel lets au-
thorized processes set up these mappings with system calls.
As we discuss later, the UITT and its UPID entries are also
essential for UIPI routing.
Routing interrupts at user level. The interrupt system
is responsible for routing messages from sources (devices,
cores, timers) to destinations. Destinations are cores (ad-
dressed by APICID), and messages are 8-bit values (vectors)
that uniquely identify the cause of the interrupt. By design,
routing is quite static—APICIDs are typically assigned to
cores at startup time, and rarely change.

To extend x84-64 with user interrupts, there were several
limitations of the existing interrupt routing scheme to over-
come: (1) there was no notion of addressing threads—which
are dynamically created, destroyed, and migrated between
cores. (2) the x86 per-core (APICID) vector space is quite
small (256 possible values), and parts of it are already dedi-
cated to other purposes—so sharing this space with user IPIs
would be quite limiting. (3) cores are always available, but
threads are not; when an interrupt arrives, the destination
thread may be context-switched out.

To address these limitations, UIPI creates its own orthogo-
nal virtual namespace (thread IDs) and vector space (a 6-bit
user vector, or UV). To deliver interrupts in this new names-
pace, it introduces two new types of data structures that are
shared in memory between cores—the per-process UITTs
and per-thread UPIDs previously mentioned. Next, we look
at these data structures in more detail and how UIPI uses
them to send and receive interrupts.

3.2 Sending and Receiving UIPIs
At a high level, when a UIPI is sent, the sending core looks
up the UPID of the destination thread in the UITT, modifies
the UPID for the destination thread, and then sends a con-
ventional IPI to the receiving core to notify it of a pending
UIPI. The receiving core then uses the state in the UPID to
deliver the request.

Expanding on this, we begin by noting that each thread
that can receive UIPI’s has an associated UPID that is allo-
cated by the kernel. Each UPID is a struct shared inmemory
among all cores. We will refer to its fields, shown in Table 1,
in our description below.
To start, before a UIPI can be sent, a user space program

asks the kernel to set up a route [5]. On the receiving thread,
the register_handler(...) system call allocates a UPID,
and stores a pointer to a user-level interrupt handler that
will be invoked when a UIPI is received. On the sending
process, the register_sender(...) system call allocates
a new entry in the UITT, and stores a pointer there to the
appropriate UPID and a user-supplied vector.

User interrupts are sent using the new senduipi instruc-
tion, which takes one operand, an index into the UITT. To
send a UIPI, the sending core looks up the UPID and vector in
the UITT, sets the bit in the PIR field of the UPID to indicate
which vector was posted, and sets the ON-bit indicating an
interrupt is pending. It then sends a conventional IPI to the
core where the thread is running (the address in NDST), with
the vector (NV) to indicate that there is a pending UIPI.

When this IPI arrives, the receiver core compares the vec-
tor it received with a field of an MSR (UINV) that stores
the vector for UIPI notifications. If they match, the receiver
then consults the PIR field of the UPID of the current thread
to determine if the UIPI should be delivered to the current
thread or if it needs to be handled by the OS.
If the UIPI is destined for the currently running thread

(fast path), it delivers it by invoking the handler registered by
the receiver, which returns using the new uiret instruction
when it completes. Otherwise, it is delivered later by the
kernel on the slow path. On the slow path, when the kernel
resumes the thread an interrupt was destined for, it will
repost the captured UIPI as a self-UIPI through the local
APIC.

However, it might slow down other programs running on
the receiver core if we frequently receive and process inter-
rupts that are destined for out-of-context processes (slow
path). To mitigate this, UIPI includes a “suppressed notifica-
tion” (SN) bit field in the UPID, indicating when the receiver
is not ready, thus preventing the sender from continuing to
send interrupts to that thread. When a thread gets context
switched out, the kernel sets the SN bit, halting further UIPIs
from sender threads.

Threads can also manually toggle interrupt delivery using
the new clui and stui (clear and set user interrupt flag, re-
spectively), which work similarly to their kernel-mode coun-
terparts, and use testui to query if interrupts are blocked.

Finally, a receiver thread might migrate from one physical
core to another. Thus, a sending core must correctly deter-
mine which destination core it should send the IPI to. To
solve this, the sending core reads the NDST field of the UPID
that stores the APICID of the core the thread is currently

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

System Bus

Processor Core

Local Apic

reg_sender(fd,flags);
SENDUIPI
...

Interrupt Command Register (ICR)

2

3

Receiver
Processor Core

Local Apic

End of Interrupt Register (EOI)

UIRR

UI_NOTIFICATION:
 update(UPID,UIRR);
UI_DELIVERY:
 save_state;
 UIF=0;
 JMP HANDLER;

uipi_handler(vec){
 //handler code
 UIRET
}

Program Code

6

Program Code
UPID

 Micro Seq ROM (MSROM)

Mem

...
outstanding
notificatin

 PIR

4

5 7

...

1

UIF

Sender

Figure 1. Architecture View of UIPI: UIPI is largely im-
plemented in microcode. The sender communicates the UIPI
vector through shared memory (UPID). Steps described in §3.3.

running on. Thus, to migrate a thread to a different core, the
OS simply updates this field.

3.3 Architecture View
To support our analysis in 3.5 and design discussion in sec-
tion 4, let’s zoom in on the UIPI sending/receiving path at the
architecture level. Figure 1 illustrates the end-to-end process
of sending and receiving a posted UIPI. Let’s examine each
step: (1) The sending core looks up the receiver’s UPID in
the UITT, updates the UPID (PIR) to reflect the vector being
sent, and sets its outstanding interrupt (ON) bit, indicating
an interrupt is pending. (2), The sending core reads the
APICID and vector of the receiving core from the UPID, and
writes it to interrupt command register (ICR). This causes
the local APIC to send an interrupt to the receiving core.
(3) The IOAPIC sends the interrupt message over the sys-
tem bus to the local APIC on the receiver. The local APIC
notifies the core by raising an interrupt signal line [4]. (4)
The receiving core issues a full pipeline flush and starts exe-
cuting a microcode procedure called notification processing
that reads the user interrupt vector from the UPID of the
current thread, saves it in a dedicated register (UIRR), and
clears the outstanding notification bit in the current thread’s
UPID. (5) The core executes the user interrupt delivery mi-
crocode procedure. It pushes the stack pointer, PC, and user
vector onto the stack. It clears the user interrupt flag (UIF)
disabling interrupt delivery for the handler. It updates the
UIRR to show the interrupt has been processed. And finally,
it jumps to the user-level interrupt handler specified in the
UINT_Handler register. (6) The handler executes. (7) The
handler executes a uiret, popping the stack pointer and
PC from the stack, and sets the user interrupt flag (UIF), re-
enabling interrupt delivery, and resuming normal control
flow on the receiver.

3.4 UIPI Performance
Table 2 summarizes the key performance metrics of UIPI.
The setup for measuring these is described in §5. Next, we
describe the experiments we use to reverse engineer UIPI.

Table 2. Key performance metrics of UIPIs.

End-to-End Latency Receiver Cost SENUIPI CLUI STUI

1360 cycles 720 cycles 383 cycles 2 cycles 32 cycles

3.5 Deconstructing the UIPI Microarchitecture
Interrupt handling strategy. The first step processors
take when handling interrupts is to redirect control flow
to the interrupt handler. However, with reorder buffers in
modern processors capable of holding 500 or more in-flight
instructions, the strategy they choose in dealing with those
in-flight instructions has significant performance implica-
tions. Flushing all in-flight program instructions is the con-
ventional solution, as it minimizes latency to handle the
interrupt. But draining all in-flight instructions is also an
option. Here, all (correctly fetched) in-flight instructions
would be allowed to retire. Once the pipeline is empty of
pre-interrupt instructions, the program counter points to
the last instruction in the program before the interrupt. The
PC for the next instruction can be saved, designating where
the processor should resume execution after the interrupt
handler. This approach introduces greater latency (waiting
for the pipeline to drain), but minimizes the wasted work.

To discover what our Sapphire Rapids processor does, we
built two test programs that expose the effects of this feature.
We exploit the fact that with flushing, the end-to-end latency
of a UIPI is independent of the in-flight instructions on the
receiving core. With a drain strategy, latency depends on
what type of instructions are in flight.

Our first test program does pointer chasing, allowing us
to vary the time it would take to resolve/drain the chain.
We gradually increase the size of the workload, increasing
the percentage of pointers that miss in the cache, and thus
the length of time it would take to drain the chain of de-
pendent fetched instructions from the pipeline. We observe
the change in the end-to-end UIPI latency, expecting that
as cache misses increase, this would affect the end-to-end
UIPI latency if a drain strategy is employed. However, such
latency variations were not observed, suggesting that our
processor employs a flush strategy. Our next test program
used Intel’s hardware performance counters to measure the
number of instructions that are dispatched but not commit-
ted (i.e., flushed) when we receive interrupts. We find that
flushed micro-ops increase exactly linearly with the number
of interrupts received, again, implying a flush strategy.
Where are the receiver overheads coming from? To
understand the cost of receiving a user interrupt, we design
a measurement program that records the costs of each indi-
vidual step of receiving a UIPI as described in §3.3. As each
step has an observable effect on a shared data structure (e.g.,
UPID), our test program running in a parallel thread can
monitor these locations for changes made by the receiver
core and measure the duration between the occurrence of

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

Time
(cycles)

Se
nd

er
R

ec
ei

ve
r

SENDUIPI
APIC

APIC

Normal Program Flow

31
0

38
0

Pipeline Flush

N
ot

ifi
ca

ti
on

P

ro
ce

ss
in

g

Norm
Flow

10
76

Receiver Overhead = 696 Cycles

80
4

Lost Cycles (Flush, Refill, etc.) = 424 Cycles

D
el

iv
er

y

H
an

dl
er

86
6

10
07

10
36Update UPID

outstanding bit 10
66Update

PIR

Sa
ve

 R
SP

Sa
ve

 v
ec

to
r

0

Notification and Delivery = 262 Cycles

Figure 2. UIPI Latency Timeline: The average latency for
each step of delivering a UIPI as inferred by our measurements.

these events. As these changes take place in kernel mode, our
measurement program is implemented as a kernel module.
If our measurement program and the observed receiver

thread run on different physical cores, memory writes to
the UPID must traverse the last-level cache— introducing
unpredictable overheads into our measurements. To avoid
this, we pin our measurement kernel module to the sibling
SMT context of the receiver thread.

To determine when an interrupt begins, we need to record
the timestamp of the last instruction in the normal program
flow to be executed before the interrupt is processed. To
facilitate this, the receiver process executes the rdtsc in-
struction within a loop to record the current time. In the
interrupt handler, this recorded value is saved as the final
point in the pre-interrupt execution.

We repeat these measurements 400K times and report the
average of each time interval. Figure 2 summarizes the results
of our measurements. On the sender, we start measuring the
time right before we execute the senduipi instruction that
marks time 0 in Figure 2. The senduipi instruction causes an
interrupt to be sent from the sender’s APIC to the receiver’s
APIC which then interrupts the receiver program flow at cy-
cle 380. After that, the next observable event on the receiver
side is the update to the outstanding notification bit in the
UPID during the notification processing. Our observations
indicate that a significant portion of the time on the receiver
side–424 cycles–is spent between the last program instruc-
tion and the first notification processing event—we believe
this latency is a combination of: (1) the latency of the pipeline
flush—as the processor can only flush a limited number of
micro-ops per cycle, flushing all the in-flight instructions
might take time, (2) the latency of filling the pipeline with
the interrupt notification processing micro-ops, and (3) the
latency of executing any interrupt notification processing
micro-op that precedes the observable event that we monitor.

The notification and delivery take at least 262 cycles, while
executing the uiret is relatively quick, taking only 10 cycles.
Where do the costs of senduipi come from? We ran a
test program that repeatedly executes successful senduipi
instructions (we found that unsuccessful UIPIs show dif-
ferent performance characteristics) and measured available
hardware performance counters. Averaging across 300 mil-
lion runs, we observe that each successful senduipi takes a
total of 383 cycles. Out of those cycles, the processor stalls

for 279 cycles per senduipi due to serializing operations.
Some of the micro-ops of senduipi write to MSRs (e.g., the
one that actually writes to the ICR register), and we know
that writes to MSRs are serializing operations [31], which
explains the stall cycles. Our measurements also show that
the senduipi is implemented using microcode, as we see
57 micro-ops delivered through the Micro Sequencing ROM
(MSROM) for each senduipi.

4 xUI: Extended User Interrupts
xUI attempts to meet the following design goals.
▶ Fast: faster is better; notification is a basic building block

for IO, preemption, synchronization, etc. xUI aims to offer
performance on par with shared memory notification to
eliminate the need for polling.

▶ Non-intrusive: xUI should be adoptable with minimal
changes in existing high-performance processors. Thus,
it should have a small bill of materials, require minimal
changes to the existing ISA and microarchitecture, and
not impose a performance tax on other features.

▶ Simple and compatible: xUI should work with existing
software and enable simpler solutions than current user-
level notification.

▶ General Purpose: xUI should support all forms of noti-
fication offered by the interrupt system including timers,
device interrupts, and IPIs.

4.1 Overview
Tracked interrupts: closing the memory gap. Tracked
interrupts offer an alternative approach to interrupt deliv-
ery that avoids the high costs of flushing the pipeline. This
enables notification with latency and performance costs
comparable to memory-based notification (polling), with
the efficiency and responsiveness of asynchronous notifica-
tion. Tracked interrupts improve on the overhead of UIPI by
roughly 3x-9x, with a notification taking 231 or 105 cycles,
depending on interrupt type (IPI, device, timer interrupt).
This offers significant benefits for performance and efficiency
in high-performance applications (§6).
HWsafepoints: precise interrupts for preciseGC. Hard-
ware safe points provide an explicit safepoint instruction.
This allows compilers to communicate precisely where it is
safe to deliver an interrupt. Safepoints address the needs of
languages with precise GC at near zero cost, with minimal
architectural complexity. While UIPI could implement this
with clui and stui, this pair of instructions costs 34 cycles
together (Table 2), expensive enough that when used in a
tight loop or hot code path they are prohibitively expen-
sive. For example, using them to protect a critical section in
malloc() in RocksDB incurred a 7% throughput penalty.
KB_Timer: fast efficient user-level timer interrupts.
The KB_Timer (Kernel Bypass timer) eliminates the cost and
complexity of OS-based timers and dedicated timer threads.

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

With KB_Timer, each timer interrupt is 105 cycles. As each
core gets its own timer, it eliminates the added notification
overheads that scale with the number of cores (Figure 6).
KB_Timers are also directly programable from user space,
allowing efficient access to change the timer frequency, dis-
able the timer, or use a different mode of operating (one-shot
vs. periodic).
Interrupt forwarding: device interrupts for threads.
Kernel bypass interfaces for NICs and accelerators force
user-level code to poll for IO completion events. xUI aims
to mitigate this inefficiency. Device interrupts are normally
routed to cores (by APICID) rather than threads, and UIPI
offers no solution. Interrupt forwarding (§4.5) overcomes
this limitation by routing interrupts destined for a particular
APICID/vector to a user-level thread/vector, allowing user-
level code to enjoy the benefits of xUI with devices.

4.2 Tracked Interrupts
Current strategies for interrupt handling in CPU pipelines
require difficult trade-offs, forcing a choice between either a
loss of instruction throughput, or high latency. Tracked in-
terrupts offer a new strategy for coping with the challenges
of speculative execution (§3.5) that minimizes interrupt han-
dling latency without sacrificing throughput.
To recap, Flushing—the common approach on modern

out-of-order processors—flushes the pipeline immediately
when an interrupt is received. This throws away all in-flight
work, which hurts throughput but minimizes latency. In
modern architectures with over 500 in-flight instructions,
the lost throughput (for the interrupted thread) on every in-
terrupt can represent hundreds or thousands of cycles of lost
progress. There can also be a latency cost as many architec-
tures will have a limit on the number of micro-ops that can
be squashed in a cycle. Another possible approach would be
Draining—retiring all in-flight instructions before delivering
an interrupt. This does not waste work, but it adds signif-
icant latency. The latency is necessary because we cannot
begin fetching until all sources of speculation are resolved;
otherwise, we risk losing the interrupt. The cost of both
methods is only increasing, as successive generations of pro-
cessors increase the size of instruction windows—enabling
more in-flight work.

Our approach, Tracking, avoids both of these compromises
by exploiting the observation that interrupts are inherently
asynchronous, and thus the processor has some flexibility as
to where in the instruction stream the interrupt handling
code issues. To wit—both flushing and draining treat the
precise point in the instruction stream where the interrupt
signal was detected as meaningful, i.e., as a synchronous
event, and issue the interrupt handling micro-ops immedi-
ately after that instruction (either the last instruction retired
or the last instruction fetched, respectively).

Tracking exploits the fact that the precise point in the
instruction stream when an interrupt is detected isn’t seman-
tically meaningful—interrupts are inherently asynchronous,
thus the processor can choose where to issue the interrupt
handler to achieve the best possible latency, without sacri-
ficing throughput.

Even though Tracking appends instructions to the end of
the inflight instruction stream, like Draining, we do not expe-
rience the same latency. Because we are (immediately) inject-
ing instructions without dependences on prior instructions,
we expect them to enter execution quickly with minimal la-
tency cost, even in the presence of a non-empty instruction
window.
Microarchitecture design. In contrast to flushing or drain-
ing, tracking is primarily implemented at the front-end of the
processor (the fetch unit), rather than the back-end (commit
unit).

At a high level, tracking delivers an interrupt in two steps.
To start, as soon as an interrupt is received and accepted
by the local APIC, tracking forces the instruction fetch unit
to redirect control flow to MSROM, where the micro-ops
for interrupt notification processing are stored—effectively
injecting these instructions into the micro-op stream. Next,
it tracks whether these micro-ops are committed or not, en-
suring that: (1) they will be reissued if the processor flushes
the younger in-flight instructions on mispredictions, and
(2) we can accurately identify and save the last program
instruction—the place execution will resume after the in-
terrupt handler runs, i.e. after an (iret) instruction. This
method guarantees that the interrupt will eventually be de-
livered, even if an in-flight branch is misspeculated, without
throwing away useful work. Figure 3 provides an overview
of the architectural changes introduced by our approach.

Now let’s examine tracking in more detail. To start, when
an interrupt arrives from the local APIC, the “next PC logic”
in the front-end checks if it is at an instruction boundary—
ensuring it is not in the midst of decoding micro-ops for a
single instruction. Once this condition is satisfied, it then
immediately sets the micro-PC to the beginning of the inter-
rupt notification processing micro-routine in the MSROM
and continues execution.

Next, because we neither flush nor drain, we have several
new challenges to cope with:

First, we have to deal with the possibility of misspecuala-
tion. For example, on a branch misprediction, the processor
normally recovers by flushing all the instructions younger
than the branch, then resuming execution. However, this
will also flush our interrupt processing code, causing us to
lose an interrupt.

To prevent this, we implement a state machine in the front-
end to track if we are in the middle of handling an interrupt.
If there is a flush due to a misspeculation while an interrupt
is being handled, we immediately redirect the fetch unit

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

to our interrupt processing microcode—re-injecting these
micro-ops before resuming execution.
The interrupt processing microcode will remain the de-

fault misspeculation recovery path until the first interrupt
micro-op commits. It is possible that the processor misspecu-
lates and then restarts multiple times, however, the interrupt
processing microcode—and the interrupt handler, will even-
tually get committed. Subsequent restarts may end up being
faster, as the interrupt handler’s code/data may already be
in the cache.
Second, we need to be able to identify the next_pc value

following the last committed program instruction before the
interrupt, to return to the correct address on an iret (return
from the interrupt handler). This correct return address may
change as we handle misspeculations. However, our solu-
tion to misspeculation also handles this seamlessly, without
significantly changing interrupt processing microcode. To
start, we read the next_pc from the front-end when we redi-
rect execution. If we observe no misspeculations, then this
value is correct. If there is a recovery from a misspeculation,
the front-end will (as always) calculate a new next_pc value
which our restarted interrupt process microcode will again
use.
Cheaper than sharedmemory notification? Our results
suggest that tracked interrupts could be cheaper than shared
memory notifications on the receiver side for reasons similar
to why they are cheaper than normal interrupts—shared
memory notification is inherently synchronous, thus it can
introduce unexpected control flow.

To wit—polling typically involves a read of a shared vari-
able, with the common path being a cache hit and no pending
notifications.When a notification does arrive, it will typically
involve both a long memory operation (cache miss due to an
invalidation event by the remote write, followed by a slow
read of the remote line) and a branchmispredict—resulting in
a flush of instructions younger than the mispredicted branch.
Further, these steps will be serialized, because only when the
long-latency load retrieves its value will the branch mispre-
dict resolve and recovery begin. Again, similar to interrupts,
this cost will increase as speculation windows grow in future
processors.
At present, whether tracked interrupts are as cheap (or

cheaper) than polling depends on the cost of interrupt rout-
ing. Recall the steps for delivering a UIPI described in §3.3.
Without the costs of flushing, the next major overhead of
UIPI is reading the UPID, which is equivalent to polling, as
this will similarly miss the cache if a remote core has updated
the UPID to send an IPI. However, as we discuss next, nei-
ther timers (§4.3), nor device (§4.5) interrupts with xUI need
to modify this structure. Thus, the microcode for interrupt
delivery can start at step 5 of our description in §3.3, that
takes only 105 cycles to execute.
Hardware cost and complexity. Our approach to imple-
menting tracked interrupts aims to minimize additional cost

Frontend Commit Unit

ROB
0

1

2

3

… P

… P

… I

… I

Src

Commit PC

Head

Program
µops

Interrupt
µops

Src
Change?

Save PC

Yes

Interrupt Committed

if (interrupt is active){
 if (µpc==0){ //instr boundary
 (npc, nµpc) = notif_proc_start_µop;
 state = interrupt_initiated;
 }
} else if (mispred_event &&
 state==interrupt_initiated)
 (npc, nµpc) = notif_proc_start_µop;
else
 (npc, nµpc) = regular_next_pc();
if (interrupt_committed)
 state = interrupt_committed;

Next PC Logic

PC

µPC

Fetch PC

Misprediction Signal/ Correct PC
Interrupt
Line

Figure 3. Tracking Architecture: High-level overview of
the Tracking architecture, which avoids flushing or draining
when delivering an interrupt. The architectural changes are
limited to the next PC logic and minor modifications to the
commit logic.

and complexity in existing high-performance CPU pipelines.
For example, current processors don’t support partial flushes,
thus xUI does not rely on them. Thus, if a misspeculation
on an instruction that was fetched before an interrupt is
detected, the normal misspeculation recovery logic flushes
all the instructions after the misspeculation, including those
from the interrupt path, even though we will need to reissue
these later. While a partial flush could potentially offer some
performance benefits, the improvements appear negligible,
and not worth the added complexity [15, 20].
Our bill of materials includes: one bit per ROB entry to

indicate if a micro-op’s source is from normal program ex-
ecution or an interrupt path (i.e. the interrupt processing
microcode or interrupt handler), and a bit per micro-op from
the front-end to the back-end to carry this source informa-
tion to the ROB; a handful of logic gates to implement next-pc
logic to steer instruction fetch to the interrupt notification
microcode on an interrupt (Figure 3); a handful of logic gates
and a wire, to extend the commit logic to detect if an inter-
rupt has been committed and to signal the front-end, so it
knows the interrupt does not need to be issued again.

4.3 The Kernel Bypass (KB) Timer
The Kernel bypass timer (KB_Timer) offers a per-thread user-
level timer, similar to the local APIC timer. As with the APIC
timer, it is not intended for direct use by application devel-
opers. Instead, it offers a low-level primitive that user-level
runtimes can use to implement software timers for tasks like
preemption, periodic polling, timeouts, etc.
The timer is used through two new instructions: set_-

timer(cycles, mode) and clear_timer(). cycles is a 64-
bit unsigned integer and the mode is a one-bit flag, indicating
if the timer is a periodic or a one-shot timer. If the mode is
periodic, cycles is interpreted as a period in cycles. If the
mode is one-shot, cycles is interpreted as a deadline, again, in
keepingwith the traditional APIC design thatmakes it simple
to specify the next deadline when implementing multiple
software timers.

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Microarchitecture design. There is one KB_Timer per
physical core, which is multiplexed among multiple threads
by the operating system (as discussed below). The KB_Timer
has its own physical timer, rather than simply re-using the
local APIC timer, as that is already in use by the kernel.
Similar to modern local APIC timers, the timer uses the
system clock to offer high resolution.
KB_Timer interrupts are delivered by invoking the user-

level interrupt handler, and passing it the vector that was
assigned by the kernel. KB_Timer interrupt delivery is very
inexpensive (105 cycles), as it can skip the microcode steps
related to the UPID and routing (notification_process)
(§3.3) and invoke the interrupt_delivery microcode di-
rectly.
Unlike IPIs, there is no special slow path support, i.e., it

is not intended to fire when either the kernel or any thread
other than the owner is executing. If the timer reaches its
target in kernel mode, it will trap. If it is in user mode, it will
deliver an interrupt towhatever thread is currently executing.
Consequently, it is up to the kernel to manage the timer state.
Multiplexing the KB_Timer. The kernel enables and dis-
ables the KB_Timer, and sets the timer interrupt vector by
writing into the kb_config_MSR. Similar to UIPI, this allows
the kernel to control access to this mechanism through sys-
tem calls (enable_kb_timer(), disable_kb_timer()).
To keep a consistent model for each kernel thread, on a

context switch the OS saves the current timer by reading the
kb_timer_state_MSR which returns the timer deadline (time
+ the current timestamp), and saves it alongwith the assigned
vector, period, and mode so the timer can be restored when
the thread is resumed.
On the slow path (i.e., delivering an interrupt from the

kernel), we opt to simply check if the deadline has been ex-
ceeded on context restore and deliver the interrupt—similar
to the normal UIPI slow path. However, the kernel could
also continue tracking the timer using a kernel timer (which
ultimately uses the local APIC timers) while the thread is
not running, and immediately reschedule the thread when
the timer expires.

4.4 Hardware Safepoints
As discussed in §2, the lack of precise control over where
interrupts are delivered with UIPIs and signals conflicts with
the needs of precisely garbage-collected languages, that ex-
pect to be preempted at safepoints. To recap, safepoints
are precise locations in code—determined at compile time
through static analysis—where precomputed stack maps re-
quired for precise GC are valid [10]
Hardware safepoints address this by providing a precise

and near-zero-cost mechanism for the compiler to indicate
where the processor can safely deliver an interrupt. Con-
ceptually, safepoints can be thought of as a special form of
NOP—a safepoint instruction. Their actual implementation
is architecture-dependent. On x86, safepoints can be encoded

using an x86 instruction prefix [4], effectively transforming
any instruction into a hardware safepoint and eliminating
the need for a separate instruction. Since safepoints are a
common primitive in compilers for languages with precise
GC (e.g., they are supported in LLVM IR [45]), compilers
can be modified to emit safepoints with minimal changes.
xUI’s safepoint mode—where interrupts are only delivered
at safepoints—is toggled via a system call.
Microarchitecture design. To enable safepoints, we added
a one-bit flag register—implemented as an MSR similar to
UIPI’s UIF flag—to indicate whether safepoint mode is en-
abled. When the safepoint flag is set, the processor delivers
interrupts only at safepoint instructions.

Our tracked interrupts (§4.2), like normal processor inter-
rupts, are delivered only at an instruction boundaries, ensur-
ing they are not delivered in the middle of the micro-ops for a
single instruction. Therefore, implementing safepoints only
required a minor modification to the existing instruction
boundary check.
To wit—we extended this check with an additional con-

dition: if safepoint mode is enabled, the processor verifies
if the instruction currently being decoded is a safepoint
instruction, and only then delivers an interrupt. Specula-
tion adds some complexity here, as we must handle cases
where a safepoint is speculatively fetched and decoded on
an incorrect path.
During recovery from a misspeculation, normally with

tracking, if an interrupt is pending, the processor redirects
to the interrupt processing path instead of the tracked pro-
gram PC. However, if the processor is in safepoint mode, it
cannot take the interrupt immediately after recovery since
the safepoint was on the misspeculated path. In such cases,
the processor goes into a state where normal execution con-
tinues until another safepoint is encountered, then the
tracked interrupt logic redirects the processor to the inter-
rupt processing path.

Another complication arises when the safepoint instruc-
tion is decoded through optimized frontend paths, such as the
micro-op cache or the loop stream detector in Intel architec-
tures. To ensure that safepoints function correctly alongside
these optimizations, we add a bit to the encoding of each
micro-op to indicate whether it is a safepoint. If the proces-
sor is in safepoint mode and an interrupt is pending, and it is
executing micro-ops on one of these optimized paths, it uses
this bit to detect if it is at a safepoint, and thus is allowed to
deliver the interrupt.

4.5 Interrupt Forwarding: Routing Device Interrupts
We want the benefits of xUI for device I/O, however, UIPI
has its own delivery scheme using UPIDs that the rest of the
interrupt system knows nothing about. It only knows how
to route interrupts to APICIDs, that are generally assigned
to cores at boot time.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

Interrupt forwarding solves this by extending the local
APIC, allowing it to forward interrupts destined for the core
directly to the current thread. If the destination thread is
not running, the local APIC will tell the OS to handle the
notification, similar to UIPI. To implement this, Interrupt
Forwarding allows the kernel to set up mappings between
per-core (APICID) vectors and user-level vectors. Thus, when
an interrupt arrives on a mapped vector, the interrupt is
forwarded, rather like port forwarding in a network.
To set up a mapping, a thread registers through the OS

to receive interrupts from a device, and is assigned a noti-
fication vector. Interrupts are delivered as normal through
the interrupt handler. However, similar to the KB_Timer,
the UPID is never touched, thus fast path interrupt delivery
(where the receiving thread is running) is faster and free of
contention for shared memory.
Microarchitecture design. Interrupt forwarding extends
the local APIC with two new 256-bit registers, forward-
ing_enabled and forwarded_active. Each bit in these reg-
isters corresponds to a vector. forwarding_enabled indi-
cates which interrupts to forward on the current core. for-
warded_active indicates which interrupts should be for-
warded to the currently running thread.

For example, if an interrupt arrives with 𝑣𝑒𝑐𝑡𝑜𝑟 == 8. If
bit 8 is set in forwarding_enabled the APIC will set bit 8
in the UIRR MSR. From here there are two choices, the fast
path and the slow path.

If bit 8 is set in forwarding_active, the APIC will notify
the core to deliver an interrupt—this is our fast path, the
interrupt goes straight to the user-level thread. If bit 8 is
not set, this means that the thread this is destined for is not
currently running—this is our slow path. In this case the
APIC issues a regular conventional interrupt, the kernel trap
handler looks at the cause, then reads the vector from UIRR
and stores it for later delivery in the DUPID (see below).
Multiplexing interrupt forwarding. Each kernel task
(thread) has it’s own 256-bit vector indicating which inter-
rupts are forwarded to it. This vector is written to for-
warded_active when a thread resumes execution.

During registration, the OS also allocates a data struc-
ture similar to the UPID for handling the slow path on each
receiver—i.e when the destination thread is not running, that
we call Device User Interrupt Posted Descriptor (DUPID).
When a forwarded interrupt arrives that the current thread
is not waiting for, the kernel updates the DUPID and delivers
the interrupt via the normal slow path, similar to a UIPI.

Our interrupt forwarding scheme, while efficient and min-
imally intrusive, is constrained by the limited vector space of
the underlying core as this must be shared by threads on the
host. This limitation restricts the number of device/user pairs
that can be supported simultaneously. One could imagine
adding a new field to the message format of the interrupt
system, or repurposing unused bits in the existing message
format (e.g. the clusterID) to avoid this limitation.

Table 3. Architecture Detail for the Baseline x86 Core
Baseline Processor

Frequency 2.0 GHz I cache 32 KB, 8 way
Fetch Width 6 𝜇ops D cache 32 KB, 8 way
Issue Width 10 𝜇ops Retire Width 10 𝜇ops
Squash Width 10 𝜇ops Decode Width 6 𝜇ops
SQ Size 72 entries IQ 168 entries
LQ Size 128 entries Functional Int ALU(6), Mult(2),
ROB Size 384 entries Units FPALU/Mult(3)

5 Experimental Methodology
5.1 Hardware Platform
We ran all of our experiments on an Intel Xeon Gold 5420+
processor with 28 Sapphire Rapids cores, using Intel’s fork of
Linux v6.0.0 with their UIPI patches [5].We ran our processor
at 2 GHz with TurboBoost, frequency scaling, and c-states
disabled to ensure controlled measurements. We used both
Linux perf [23] and Agner tools [22] to read performance
counters. To estimate the number of flushed micro-ops we
calculated the difference between the number of committed
micro-ops and decoded instructions—as there is no direct
performance counter for flushed micro-ops.

5.2 gem5 Simulation
Our simulation is based on gem5 (version 23) [46] and ex-
tends the out-of-order CPU model. We configured the base-
line architecture to model an Intel Sapphire Rapids processor
such as the Intel Xeon Gold 5420+, using the parameters
shown in Table 3. We ran gem5 in full-system mode, again
with the Intel fork of the v6.0.0 Linux Kernel [5]. We imple-
mented UIPI support in gem5, and used our characterization
study (§3) to provide accurate costs for flushing, notification,
and delivery, and built support for xUI on top of this. We also
verified that the receiver overhead of our UIPI simulation in
gem5 closely matches the overhead of UIPIs on our Sapphire
Rapids processor (Table 2), with both around 720 ns. To sup-
port our I/O notification experiments (§5.4), we ported the
gem5-dpdk [58] device model from ARM to x86, and added
support for delivering I/O completions using xUI.
One interesting discovery was that gem5’s model of in-

terrupt performance is quite different from real hardware.
For example, it drains the pipeline instead of flushing it, and
a fixed 13 cycles was artificially added after each drain. To
remedy this, we plan to upstream our improved interrupt
model to gem5.

5.3 Preemptive Scheduling with UIPI and xUI
To evaluate UIPI and xUI with preemptive scheduling, we
run Aspen [30] in gem5. Aspen is a user-level runtime based
on Caladan [26]. It supports lightweight user-level thread-
ing and kernel-bypass I/O. Aspen implements preemptive
scheduling via user interrupts and balances threads across
cores using work stealing.

For the application, we run RocksDB [8] (v5.15.10), a pop-
ular key-value store, using a bimodal workload consisting
of 99.5% GET (1.2 𝜇s) and 0.5% SCAN (580 𝜇s) requests. We

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

generate requests using Caladan’s open-loop load generator,
configured to use UDP with a Poisson arrival distribution.
The load generator and the RocksDB server each run in an
Aspen runtime on a single core.

To enable us to run this workload in gem5, we adapted
Aspen in three ways. First, to simulate network traffic in
gem5, we added an additional core that forwards packets
between the load generator and the RocksDB server. Second,
we disabled core reallocation to reduce noise and removed
the kernel module that implements it (ksched). Instead, we
pin each kernel thread to a specific CPU core. Finally, we ex-
tended Aspen to use our KB_Timer. With KB_Timer enabled,
each core gets its own timer.

5.4 IO Notification: L3Fwd & Simulated Accelerators
DPDK-based L3 forwarding. We adopted a methodology
similar to prior work to measure the inefficiencies associated
with spin polling using DPDK [29] . In our experiments, we
use DPDK’s Layer 3 Forwarding (L3Fwd) application, with
the Longest Prefix Match (LPM) algorithm, a routing table
containing 16,000 entries, and 64-byte IPv4 UDP packets. We
model a system with 1, 2, 4, or 8 different NICs, each with its
own receive queue. Packets are sent back to the same NIC
in the 1 NIC case, similar to [29].
We used a dedicated external device and an open-loop

packet generator that are part of gem5-dpdk [58] to generate
our experimental workloads. We modified the packet gen-
erator to use an exponential distribution for inter-packet
arrival times to more accurately model the burstiness of real
network traffic [14, 27].
On-chip accelerators. We built a simulated on-chip ac-
celerator similar to Intel’s DSA [42], with a configurable
distribution of offload latencies. The accelerator is connected
to our gem5 system via a simulated PCIe bus. User programs
submit offloads to the simulated accelerator using an asyn-
chronous interface similar to SPDK [9]. We evaluated our
accelerator with a synthetic closed-loop workload that busy-
spins while it waits for requests to complete.
Real offload latencies vary as a function of the requested

operation, the request (buffer) size, and contention for the
accelerator. To capture this variability, we model offload
latencies by adding random noise with varying magnitude
to the response time of the accelerator. We model two types
of requests with response times of 2 𝜇s and 20 𝜇s. According
to prior work [42] and our own measurements, examples
of operations and data sizes that have these mean offload
latencies include: (1) for 2 𝜇s latency: copying one 16 KB
buffer using DSA [42] or copying a batch of 8 buffers of up
to 2048 bytes each; (2) for 20 𝜇s latency: copying one 1 MB
buffer using DSA [42].

100 50 20 10 5 3 1
0%

10%
20%
30%
40%
50%

Sl
ow

do
wn

fib

100 50 20 10 5 3 1
0%

10%
20%
30%
40%
50%

linpack

100 50 20 10 5 3 1
0%

10%
20%
30%
40%
50%

memops

Interrupt Interval (s)

UIPI SW Timer xUI (SW Timer +
 Tracking) xUI (KB_Timer + Tracking)

Figure 4. Reducing Receiver Overheads: UIPI-based no-
tifications impose the most overhead, due to their impact on
the receiver pipeline and routing costs. Switching to notifica-
tion using xUI tracked interrupts eliminates pipeline overheads.
Switching to KB_Timers eliminates routing costs, for an over-
head reduction of 6.9x vs. UIPI.

6 Evaluation
We begin by evaluating xUI’s features individually, then
explore xUI in end-to-end benchmarks in §6.2.

6.1 xUI Features
Below we evaluate the receiver-side overheads with xUI,
contrast receiver-side overheads for two precise mechanisms,
i.e., hardware safepoints and polling, examine the reduction
in sender-side overheads and core counts from KB_Timers,
and explore the maximum latency of interrupts with xUI.
Receiver-side overheads: UIPI and xUI. To start, we
look at how xUI reduces the overhead of receiving inter-
rupts when compared to UIPI. Figure 4 shows how periodic
interrupt delivery impacts three different benchmarks (fib,
linpack, and memops).
Our experiment sends periodic interrupts to the running

application and measures how much longer it takes to com-
plete. We examined three different strategies to isolate the
benefits of different xUI mechanisms: a dedicate timer core
sending UIPIs (UIPI SW Timer), xUI (SW Timer + Tracking)—
tracked interrupts also being sent with a dedicated timer
core, and xUI (KB_Timer + Tracking)—tracked interrupts
being sent by the KB_Timer.
To start, we can see that tracked interrupts reduce the

per-event cost of delivering an interrupt from an average of
645 cycles with the UIPI baseline to 231 cycles with tracking.
Switching to KB_Timer as our time source eliminates the
added delivery costs of accessing the UPID, as discussed
in §4.3, further reducing the per-event cost of an interrupt
to an average of 105 cycles. Thus, the cost of delivering
interrupts at a 5 𝜇s interval decreases by roughly 6.9x from
6.86% with UIPIs to just 1.06% with KB_Timers and tracking.
Hardware safepoints vs. polling-based preemption. We
compare the overhead of thread preemption with two precise
mechanisms—xUI hardware safepoints and polling— as well
as UIPIs. Our experiment preempts two programs: matmul
and base64. To implement polling-based preemption, we use
Concord [34], a state-of-the-art system for compiler-based

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

200 100 50 20 10 5 2
0%

5%

10%

15%

Sl
ow

do
wn

matmul

200 100 50 20 10 5 2
0%

5%

10%

15%
base64

Preemption Quantum (s)

Polling UIPI xUI: Hardware Safepoints

Figure 5. Preemption with Hardware Safepoints: Pre-
emption with xUI (tracking + KB_Timer) using hardware safe-
points is precise and near zero-cost—visible overheads are pri-
marily due to context switch costs. UIPI is imprecise and scales
less gracefully due to its higher per-event cost. Polling is precise
and scales better with increased preemption rates, but imposes
up to 10x more overhead than UIPI or xUI.

instrumentation (polling) preemption as a representative
system. To evaluate hardware safepoints, we modified Con-
cord’s compiler instrumentation passes to insert safepoint
instructions rather than polling checks.

Figure 5 shows that hardware safepoints have much lower
overhead than the other two approaches for both programs at
any preemption quantum. With a quantum of 5 𝜇s, our hard-
ware safepoints show a slowdown of only 1.2%-1.5%—largely
attributable to the overhead of context switching—while the
compiler-based approach imposes 8.5%-11% overhead. This
improvement is mainly due to (1) xUI’s lower receiver costs,
and (2) the near-zero costs of our safepoint instructions as
they are just interpreted as NOPs when there is no event.
Note that as we return to the same thread after handling a
preemption, the costs of context switches are minimized vs.
context switching to different threads, an I/O handler, etc.—
which would pollute the microarchitectural state. While this
has the benefit of isolating the improvements due to noti-
fication costs, it doesn’t illustrate how these benefits are
amortized in more complex settings. Our end-to-end eval-
uations on RocksDB in §6.2.1 capture these more realistic,
higher context switching costs.
Benefits of eliminating timing cores with KB_Timers.
As discussed in §2, to amortize the costs of OS timers and
avoid contention [55], user-level runtimes [3, 30, 44, 54] of-
ten rely on notifications from a core that is partially or totally
dedicated to timing. In Figure 6, we show the CPU utilization
of a timer core using two different OS timer interfaces. In our
experiment, we use setitimer(), which delivers a signal
each interval, and nanosleep(), where a thread goes to sleep
and is then woken up each interval. UIPIs are used to send
notifications to other cores, and we show how overheads
scale on the sender (timer core) as there are more cores to no-
tify. As we can see OS timers exert a small, but still noticeable
overhead at lower notification rates. And as the notification
rate increases, they consume an increasingly large percent-
age of the core. xUI eliminates these costs entirely as the

0 6 12 18 19
Number of Application Cores

0%
20%
40%
60%
80%

100%

Ti
m

er
 C

or
e

CP
U

Us
ag

e
(%

) 3 s 5 s 10 s 20 s 50 s 100 s
nanosleep itimer

Figure 6. The Cost of a Timer: OS overheads become in-
creasingly costly for fine grain timing. Here we see CPU use
on a single core to get time from the OS (using setitimer() or
nanosleep()) and then preempt application cores with UIPI.
Lines correspond to different preemption frequencies. The costs
of OS timer notifications initially dominate, but the overhead
of sending UIPIs increases with the number of receiving appli-
cation cores. xUI eliminates these costs, as each core gets its
own low-overhead high-resolution KB_Timer.

KB_Timer eliminates the need to use expensive OS interfaces
(with multiple context switches per timer event), and each
core can have its own timer, eliminating the need for IPIs.
Higher performance system [30, 34, 44], will sometimes

dedicate an entire core to spinning on a high-precision timer
(e.g., rdtsc) to avoid OS overhead. Using this approach, we
found we could support up to 22 application cores at a 5 𝜇s
preemption interval [30]. As the number of receiver cores
increases, notification costs (senduipi) become dominant.
Using KB_Timer, we can eliminate the need for a dedicated
timer core entirely, thus, as a baseline, it saves us 1 core for
every 22 workers at 5𝜇s.
Of course, the benefits of the KB_Timer depend on the

number of available cores and the workload. For example, in
the most optimal case, if we have two cores and can fully uti-
lize an extra core to improve throughput, KB_Timer doubles
throughput. In the least optimal case, i.e., 22 other worker
cores fully utilized, it only improves throughput by 4.5%.
KB_Timer also offers significant per-event performance ben-
efits vs. UIPI (Figure 4).
Maximum interrupt latency. Tracking offers the ben-
efit of maximizing throughput as it never discards work,
however, latency depends on the nature of the in-flight in-
structions when an interrupt arrives.

To explore the limits of this, we sought to understand the
potential worst-case latency. To measure this we constructed
an example that fills the pipeline with a chain of long-latency
load instructions that miss the CPU caches—and then our
dependency chain ultimately produces the value for the stack
pointer register. Note that that this is an extreme pathological
case, where the interrupt code is in fact dependent on a long
chain of inflight instructions. While it is not unlikely that
the interrupted thread has a long chain, or that it modifies
the stack pointer, it is highly unlikely the latter depends on
the former.

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

With tracked interrupts, this case delays the execution
of the interrupt delivery procedure (§3.3) as there is an in-
struction in the delivery that reads the value of the stack
pointer register (to save it on the stack). The value remains
unavailable until the dependency chain completes, poten-
tially delaying interrupt delivery by hundreds of cycles.

Whenwe run this experiment, we do see an absoluteworst-
case latency close to 7000 cycles with a chain of 50 or more
long-latency loads. Utilizing Intel’s flush mechanism has a
worst-case latency an order of magnitude less (because all of
those instructions just get squashed). However, experiments
with our more typical benchmarks (e.g., linpack2, memops,
fib) (in addition to our end-to-end workloads), confirm this
is indeed an anomalous result. In these cases, tracking la-
tencies were substantially better than flushing, owing to the
fact that often there is no delay between when an interrupt
arrives and when it issues with tracking, whereas flushing
introduces an additional delay before an interrupt can issue.
That said, we believe this is an area where we are up against
the limits of what is knowable through reverse engineering
and simulation. Thus, we refrain from drawing more definite
conclusions.

6.2 End-to-End Evaluation
Here we evaluate xUI end-to-end in three use cases.

6.2.1 Preemption for RocksDB in Aspen. Preemption
reduces head-of-line blocking and tail latency in workloads
where request service times vary significantly [30, 37], lead-
ing to higher useful throughput. We evaluated these benefits
for RocksDB in Aspen (§5.3) using three configurations: pre-
emption with UIPI SW Timer (UIPI + dedicated timer core)
and xUI (KB_Timer + Tracking), and a non-preemptive base-
line. Again, our workload is a mix of 99.5% GET (1.2 𝜇s) and
0.5% SCAN (580 𝜇s) requests. We choose a preemption quan-
tum of 5 𝜇s to optimize GET throughput with a 1 ms tail
latency target.

Figure 7 shows the tail latency for GET and SCAN requests
as we vary the offered load. Without preemption, the tail
latency for GET requests is hundreds of microseconds, even
under very low load. In contrast, with preemption via UIPIs,
Aspen is able to maintain low tail latency for GET requests
(at most a few hundred microseconds) up to throughputs
of over 100,000 requests per second. The addition of KB
Timers and tracking further increases throughput for GETs
by 10%, due to the lower overhead of receiving UIs. In both
cases, preemption comes at the cost of slightly elevated tail
latencies for SCAN requests at high load. This is because each
SCAN request takes hundreds of microseconds to complete
and is thus preempted many times.

6.2.2 IO notification in l3fwd. Here we compare the
performance and efficiency of polling vs. xUI (tracked inter-
rupts + interrupt forwarding) for delivering device interrupts

0 40 80 120 160
KRPS

0

0.5

1

99
%

 L
at

en
cy

 (m
s)

GET

0 0.3 0.6 0.9
KRPS

0

10

20

30
SCAN

Non-preemptive UIPI SW Timer xUI (KB_Timer + Tracking)

Figure 7. Improving RocksDB Throughput: RocksDB
throughput with a mix of 99.5% GET (1.2 𝜇s) and 0.5% SCAN
(580 𝜇s) requests. We compare no-preemption and preempting
every 5us with UIPI and xUI. Both UIPI and xUI significantly
improve GET throughput by mitigating head-of-line blocking.
However, xUI achieves 10% higher throughput than UIPI, and
also free’s up an extra core (not shown) that UIPI-based pre-
emption requires as a time source.

0%

20%

40%

60%

80%

100%

1
qu

eu
e

Interrupt Overhead
Free Cycles

Networking Cycles
Polling Overhead

0%

20%

40%

60%

80%

100%

4
qu

eu
es

%0 Load %20 Load %40 Load %60 Load %80 Load %100 Load

Po
llin

g
xU

I

Po
llin

g
xU

I

Po
llin

g
xU

I

Po
llin

g
xU

I

Po
llin

g
xU

I

Po
llin

g
xU

I0%

20%

40%

60%

80%

100%

8
qu

eu
es

Pe
rc

en
ta

ge
 o

ve
r a

ll
Cy

cle
s

Figure 8. Improving l3fwd Efficiency: Our layer 3 for-
warding workload shows how polling always utilizes the entire
core, while xUI frees up cycles that can be used for other useful
work or power savings. At 0% load, xUI frees up 100% of cycles,
at 40% load with one queue xUI leaves 45% free, etc.

from simulated high-performance NICs to a layer 3 router
(DPDK’s l3fwd).

We observe that the throughput of both approaches is
nearly identical, with xUI throughput falling short of polling
by 0.08%. This is because with device UIs, the interrupt han-
dler polls the network queue again before returning; at high
loads the handler never returns, yielding the same through-
put as with polling. xUI achieves a 95th percentile tail latency

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

0 2 4 6 8
Noise Magnitude (s)

0%

20%

40%

60%

80%

Fr
ee

 C
yc

le
s (

%
)

2 s requests

0 2 4 6 8
Noise Magnitude (s)

0%

20%

40%

60%

80%

100%

Fr
ee

 C
yc

le
s (

%
)

20 s requests

0 2 4 6 8
Noise Magnitude (s)

4

6

8

10

12

La
te

nc
y

(
s) 2 s requests

0 2 4 6 8
Noise Magnitude (s)

20

25

30

35

40
La

te
nc

y
(

s) 20 s requests

Busy Spinning Periodic Polling xUI

Figure 9. Optimizing Latency and Efficiency of DSA
Response Delivery: Here we see free cycles (top graphs)
and latency (bottom graphs) while delivering responses from
our DSA accelerator using busy spinning, periodic polling (OS
interval timer), and xUI: Busy spinning burns the entire core
waiting for DSA responses, i.e. no free cycles (top graph), but
minimizes latency (bottom graph). Periodic polling sacrifices
latency, especially as response times become less regular, but
frees up many cycles compared to polling. xUI provides optimal
responsiveness (latency), while minimizing CPU consumption,
i.e., maximizing free cycles that can be used for other useful
work or power savings.

within +2%, -8%, and +65% of polling’s latency for 1, 4, and 8
NICs, respectively.

We also see how xUI reduces CPU consumption, i.e., leaves
more “free cycles” that could be spent on other useful work
or power savings. We see in Figure 8, with polling, all CPU
cycles are spent either handling packets (“Networking Cy-
cles”) or polling the network stack. In contrast, with device
interrupts polling becomes unnecessary. Thus, there are free
cycles. For example, with 1 queue and 40% load, xUI 45%
of cycles are free cycles, compared to polling which always
consumes all cycles.

6.2.3 IO notification in DSA. Here we explore the per-
formance and efficiency benefits of xUI for delivering I/O
completion events from our simulated accelerator modeled
after DSA. We consider two criteria: latency—how long after
a completion arrives is it delivered, and free cycles—how
many cycles are left on the core after the cost of the notifi-
cation mechanism. We evaluate three options for receiving
I/O competitions: busy spinning, periodic polling, and xUI
device interrupts.
To evaluate these different approaches, we offload tasks

with two different response time distributions as described

in §5.4. Figure 9 shows the free CPU cycles and average
latency for the offloaded tasks.
Here we see our three strategies and their results: Busy

spinning—busy spin continuously polls the completion queue,
this offers excellent responsiveness (latency), but wastes all
the CPU cycles not spent handling notifications.
Periodic polling—periodically check for completions—in

our experiment, we implement these checks with the OS
interval timer (setitimer()). Here we see that this frees
up a significant portion of cycles, but may also hurt the
latency of the offloaded tasks, as the arrival time of responses
becomes less periodic/more noisy. For example, with 20 𝜇s
requests, the latency of periodic polling increases sharply as
unpredictability rises. This is because the additional response
latency prevents periodic polling from occurring precisely
when requests finish, causing processing to wait until the
next timer event. We don’t see the same effect for shorter
requests as the timer frequency is already very high (2 𝜇s),
almost at the limit of the OS interval timer, and missing one
event does not significantly hurt latency.

With, xUI, in contrast, latency remains constant andwithin
0.2 𝜇s of the latency achieved by polling for both types of
requests. Overall xUI is able to achieve the best CPU effi-
ciency with only a small latency penalty. For example, for
2 𝜇s requests with no unpredictability (zero added noise),
tracked interrupts free up 75% of CPU cycles.

7 Related Work
Tracked interrupts. xUI’s tracked interrupts improve per-
formance by reducing the impact of unpredicted control flow
that undermines the benefits of speculative execution. In this
sense, they are similar to techniques like predicated execu-
tion [50] or selective flushing mechanisms [20] that attempt
to retain instructions when a mispredicted branch direction
reconverges with the correct path.
Hardware support for user interrupts. Prior research
made the case for the value of user-level handling of inter-
rupts [51] and exceptions [57]. To the best of our knowledge,
Intel’s Sapphire Rapids processor, released in 2023, is the first
commodity high-performance processor to offer hardware
support for user-level interrupts.

Early versions of the RISC-V spec featured user interrupt
support, but this extension was later dropped [24]. More re-
cently, RISC-V added the CLIC extension [16], to support fast
interrupts for embedded and real-time applications. While
xUI builds on UIPI, most of it is applicable to other ISAs.
Accelerators and killer microseconds. Barroso et al. in
their “Attack of the Killer Microseconds” [11] noted a grow-
ing number of high-performance IO devices (e.g., NICs, flash,
non-volatile memory, accelerators) in the datacenter will
be operating at microsecond timescales, and that current
processor architectures and software were missing the abil-
ity to deliver event notifications, hiding latency, etc. at this

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

scale. They further predicted the growing use of accelerators
to reduce the “datacenter tax”, i.e., common microsecond
scale tasks such as encryption, compression and serializa-
tion that consume 20-25% of the CPU cycles in Google’s
datacenters [40], would only exacerbate this problem.
Intel introduced UIPI to efficiently interface [38] with a

whole range of new accelerators [63] —such as DSA [42]—
that are intended to address the data center tax. xUI directly
addresses some of the challenges raised in “attack of the killer
microseconds”, and builds on the vision behind UIPI [38].
Hardware virtualization at user level. Dune [12] lever-
aged hardware virtualization features (VT [4] and EPT [4])
to provide user-level access to low-level hardware features,
including the interrupt system. Shinjuku [37] built on this
approach, enabling direct use of IPIs for preemption (rather
than signals) before UIPI became available. However, this
approach introduces additional performance overhead and
deployment challenges; as a result, user-level access to vir-
tualization has never seen widespread adoption.
High-performance IO and polling. High-performance
user-space IO stacks rely almost exclusively on polling to
detect IO events [13, 26, 37, 39, 41, 48, 49, 52, 62]. However,
polling is often quite wasteful especially when traffic is un-
predictable and as the number of queues increases [29, 43].
Hyperplane [47] reduces polling overheads with a dedicated
accelerator that offers a multiqueue mwait-type primitive.
With xUI, we explore how polling can be eliminated entirely,
demonstrating that interrupts can achieve low latency and
high performance without sacrificing efficiency.
User-level preemption. Preemption is a well-known tech-
nique for achieving more precise scheduling control. With
preemption, schedulers can improve throughputwhile bound-
ing tail latency [34, 37]. Systems that have used UIPI to en-
able this [25, 30, 35, 44] could benefit from the improved
performance and efficiency offered by xUI.
The tension between precise GC and efficient preemp-

tion has long been known in the Java runtime developer
community [28], and was extensively explored by the Go de-
velopers [2, 10]. The lack of support for loop preemption in
Java’s virtual threads [6] is simply the latest example. xUI’s
hardware safepoints offer a simple and efficient solution to
this decades-old problem.
Hacking around UIPI limitations. UIPI does not offi-
cially support timer interrupts. However, Skyloft [35] re-
cently demonstrated a trick to get around this limitation,
albeit in a very constrained way. Their approach starts by
setting the UINV field of the IA32_UINTR_MISC MSR that a
core uses to discriminate conventional interrupts and UIPIs,
to match the vector of the local APIC timer. Thus, timer in-
terrupts are forwarded to the current thread. However, the
local APIC will not set the PIR (posted interrupt) register on
the local core on a timer interrupt, which is required to de-
liver a UIPI. To get around this, Skyloft abuses senduipi in a
novel way. At startup, its sets the SN bit on the UPIDs for all

threads. Thus, when a thread then calls senduipi to send a
UIPI to itself, the PIR will be set, but no UIPI will be delivered.
Consequently, when a timer interrupt arrives, it will be deliv-
ered as expected. Finally, Skyloft repeats this self-senduipi
trick in their interrupt handler after every interrupt to ensure
the PIR is set before the next timer interrupt.
Unfortunately, this trick has significant limitations. First,

because there is only one local APIC timer, the kernel no
longer has use of the local APIC timer for scheduling, time-
keeping, etc. Next, this also disables all other uses of user
interrupts, first because the SN bit must be set for the self-
senduipi trick, and more generally because overloading
UINV for timer interrupts means the processor cannot disam-
biguate other UIPI’s from timer interrupts. For these reasons,
as well as others, e.g. direct user-space programmability, this
trick is not a substitute for xUI’s KB_Timer support.

8 Conclusion
xUI offers first class support for asynchronous notification
at user level. It significantly improves on the performance
and flexibility of UIPI, and offers a simpler and more efficient
alternative to shared memory polling.

Acknowledgments
This work was supported by gifts from Cisco, Intel, and
Google. Thanks to Chris Fallin, Shravan Narayan, Hosein
Yavarzadeh, and Brendan Sweeney for insightful discussions
and feedback on this work. We also thank the anonymous
reviewers and our shepherd, Gabriel Parmer. And finally
thanks to our families, without their support this work would
not be possible.

A Artifact
A.1 Abstract
This artifact includes 7 different modules, 5 of which are
based on our extended user interrupt model implemented
in the gem5 simulator. We help reproduce l3 forwarding
(Figure 8), accelerator (Figure 9), overhead (Figure 4), rocksdb
preemption (Figure 7), and safepoint preemption (Figure
5). There are two other modules one of which measures
core utilization of timers on a physical cpu (unlike the gem5
models, Figure 6), and the other one is a reverse engineering
program to uncover latencies of user interrupts, again on a
physical cpu (Figure 2).

A.2 Artifact check-list (meta-information)
▶ Program: gem5, dpdk
▶ Compilation: gcc,clang
▶ Transformations: compiler insertion
▶ Hardware: Intel Sapphire Rapids Processor
▶ How much time is needed to prepare workflow (approxi-

mately)?: 4 hours
▶ How much time is needed to complete experiments (ap-

proximately)?: 3 days

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Berk Aydogmus et al.

▶ Publicly available?: Yes

A.3 Description
A.3.1 How to access. https://github.com/ArchSecLab/xui

A.3.2 Hardware dependencies. These tests require a pro-
cessor with Intel Sapphire Rapids Microarchitecture.

A.4 Installation
Please follow the step of the README.md in the reposi-
tory. There are 7 folders in the xui repository, each of them
has its own README.md that explains how to generate
the experiment results. The folders are: rocksdb, accel, l3,
overhead, safepoint, timer, and profile. The measurements
on real hardware require a Sapphire Rapid processor, and at
least a 40-core machine is suggested. There are a few Ubuntu
disk images for use with the full system mode of gem5 sim-
ulator, you will find a link to download those disks on the
README.md pages.

A.5 Evaluation and expected results
We expect the experiments to closely match those in the
paper.

A.6 Methodology
Submission, reviewing, and badging methodology:
▶ https://www.acm.org/publications/policies/artifact-review-

and-badging-current
▶ https://cTuning.org/ae

References
[1] [n. d.]. DPDK. https://www.dpdk.org/.
[2] [n. d.]. Go Preemption Issue 10958. https://github.com/golang/go/

issues/10958.
[3] [n. d.]. The Go Programming Language. https://go.dev/.
[4] [n. d.]. Intel® 64 and IA-32 Architectures Software Developer’s Man-

ual. https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html.

[5] [n. d.]. Linux Support For Sapphire Rapids’ User Interrupts Still Await-
ing Mainline. https://www.phoronix.com/news/Linux-SPR-Intel-User-
Interrupts.

[6] [n. d.]. Loom - Fibers, Continuations and Tail-Calls for the JVM. https:
//openjdk.org/projects/loom/.

[7] [n. d.]. Proposal: Non-cooperative goroutine preemption.
https://go.googlesource.com/proposal/+/master/design/24543-
non-cooperative-preemption.md.

[8] [n. d.]. RocksDB: A Persistent Key-Value Store for Flash and RAM
Storage. https://github.com/facebook/rocksdb.

[9] [n. d.]. Storage Performance Development Kit. https://spdk.io/.
[10] Austin Clement. 2020. Pardon the Interruption:loop preemption in Go

1.14. https://www.youtube.com/watch?v=1I1WmeSjRSw
[11] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-

ganathan. 2017. Attack of the killer microseconds. Commun. ACM 60,
4 (2017), 48–54.

[12] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access
to Privileged CPU Features. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[13] Adam Belay, George Prekas, Mia Primorac, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion. 2016. The IX
operating system: Combining low latency, high throughput, and ef-
ficiency in a protected dataplane. ACM Transactions on Computer
Systems (TOCS) 34, 4 (2016), 1–39.

[14] Balakrishnan Chandrasekaran. 2009. Survey of network traffic models.
Waschington University in St. Louis CSE 567 (2009).

[15] Jamison D Collins, Dean M Tullsen, and Hong Wang. 2004. Control
flow optimization via dynamic reconvergence prediction. In Interna-
tional Symposium on Microarchitecture (MICRO). IEEE.

[16] RISC-V Community. 2025. RISC-V Fast Interrupts and Core-Local
Interrupt Controller (CLIC). https://github.com/riscv/riscv-fast-
interrupt/blob/master/src/clic.adoc

[17] Russ Cox, Robert Griesemer, Rob Pike, Ian Lance Taylor, and Ken
Thompson. 2022. The Go programming language and environment.
Commun. ACM 65, 5 (2022), 70–78.

[18] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The LIN-
PACK benchmark: past, present and future. Concurrency and Compu-
tation: practice and experience 15, 9 (2003), 803–820.

[19] DPDK Project. [n. d.]. L3 Forwarding Sample Application User Guide.
Accessed: 2024-18-10.

[20] Stijn Eyerman, Wim Heirman, Sam Van Den Steen, and Ibrahim Hur.
2021. Enabling Branch-Mispredict Level Parallelism by Selectively
Flushing Instructions. In MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Virtual Event, Greece) (MI-
CRO ’21). Association for Computing Machinery, New York, NY, USA,
767–778. doi:10.1145/3466752.3480045

[21] Fastly. [n. d.]. Fastly Compute. https://www.fastly.com/resources/
datasheets/edge-compute/fastly-compute/. Accessed: 2024-10-18.

[22] Agner Fog. 2024. Test programs for measuring clock cycles and per-
formance monitoring. https://www.agner.org/optimize/

[23] Linux Kernel Foundation. [n. d.]. Performance Counters for Linux
(perf). https://perf.wiki.kernel.org/index.php/Main_Page. Accessed:
2024-18-10.

[24] RISC-V Foundation. 2017. Document ’N’ extension. https://github.
com/riscv/riscv-isa-manual/issues/16. Accessed: 2025-02-08.

[25] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez, Esha Choukse,
Íñigo Goiri, Sameh Elnikety, Rodrigo Fonseca, and Adam Belay. 2024.
Making kernel bypass practical for the cloud with Junction. In 21st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). 55–73.

[26] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating interference at microsecond timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 281–297.

[27] V.S. Frost and B. Melamed. 1994. Traffic modeling for telecommunica-
tions networks. IEEE Communications Magazine 32, 3 (1994), 70–81.
doi:10.1109/35.267444

[28] Go Team. 2015. runtime: tight loops should be preemptible. https:
//github.com/golang/go/issues/10958 GitHub issue #10958, accessed
on 2025-02-08.

[29] Hossein Golestani, Amirhossein Mirhosseini, and Thomas F Wenisch.
2019. Software data planes: You can’t always spin to win. In Proceedings
of the ACM Symposium on Cloud Computing. 337–350.

[30] Linsong Guo, Danial Zuberi, Tal Garfinkel, and Amy Ousterhout.
2025. The Benefits and Limitations of User Interrupts for Preemptive
Userspace Scheduling. In Proceedings of the 22nd USENIX Symposium
on Networked Systems Design and Implementation (NSDI). To appear.

[31] Intel. 2020. Intel® 64 and IA-32 Architectures Software Developer’s
Manual.

[32] Intel. 2023. Intel® Architecture Instruction Set Extensions and Fu-
ture Features. https://cdrdv2-public.intel.com/812218/architecture-
instruction-set-extensions-programming-reference.pdf.

https://github.com/ArchSecLab/xui
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae
https://www.dpdk.org/
https://github.com/golang/go/issues/10958
https://github.com/golang/go/issues/10958
https://go.dev/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.phoronix.com/news/Linux-SPR-Intel-User-Interrupts
https://www.phoronix.com/news/Linux-SPR-Intel-User-Interrupts
https://openjdk.org/projects/loom/
https://openjdk.org/projects/loom/
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://github.com/facebook/rocksdb
https://spdk.io/
https://www.youtube.com/watch?v=1I1WmeSjRSw
https://github.com/riscv/riscv-fast-interrupt/blob/master/src/clic.adoc
https://github.com/riscv/riscv-fast-interrupt/blob/master/src/clic.adoc
https://doi.org/10.1145/3466752.3480045
https://www.fastly.com/resources/datasheets/edge-compute/fastly-compute/
https://www.fastly.com/resources/datasheets/edge-compute/fastly-compute/
https://www.agner.org/optimize/
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/riscv/riscv-isa-manual/issues/16
https://github.com/riscv/riscv-isa-manual/issues/16
https://doi.org/10.1109/35.267444
https://github.com/golang/go/issues/10958
https://github.com/golang/go/issues/10958
https://cdrdv2-public.intel.com/812218/architecture-instruction-set-extensions-programming-reference.pdf
https://cdrdv2-public.intel.com/812218/architecture-instruction-set-extensions-programming-reference.pdf

Extended User Interrupts (xUI): Fast and Flexible Notification without Polling ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

[33] Intel Corporation. 2024. What is Intel®QuickAssist Technology (Intel®
QAT)? https://www.intel.com/content/www/us/en/products/docs/
accelerator-engines/what-is-intel-qat.html. Accessed: 2024-18-10.

[34] Rishabh Iyer, Musa Unal, Marios Kogias, and George Candea. 2023.
Achieving Microsecond-Scale Tail Latency Efficiently with Approx-
imate Optimal Scheduling. In Proceedings of the 29th Symposium on
Operating Systems Principles. 466–481.

[35] Yuekai Jia, Kaifu Tian, Yuyang You, Yu Chen, and Kang Chen. 2024.
Skyloft: A General High-Efficient Scheduling Framework in User Space.
In ACM Symposium on Operating Systems Principles (SOSP).

[36] Richard Jones, Antony Hosking, and Eliot Moss. 2023. The garbage
collection handbook: the art of automatic memory management. CRC
Press.

[37] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
scheduling for 𝜇second-scale tail latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 345–360.

[38] Utkarsh Y. Kakaiya, Sanjay Kumar, Rajesh Madukkarumuku-
mana Sankaran, and Prashant Seth. 2022. Scalable I/O Be-
tween Accelerators and Host Processors. Intel Developer Articles
(2022). https://www.intel.com/content/www/us/en/developer/articles/
technical/scalable-io-between-accelerators-host-processors.html

[39] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 1–16.

[40] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a warehouse-scale computer. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture. 158–169.

[41] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. Reflex:
Remote flash ≈ local flash. ACM SIGARCH Computer Architecture News
45, 1 (2017), 345–359.

[42] Reese Kuper, Ipoom Jeong, Yifan Yuan, Ren Wang, Narayan Ran-
ganathan, Nikhil Rao, Jiayu Hu, Sanjay Kumar, Philip Lantz, and
Nam Sung Kim. 2024. A Quantitative Analysis and Guidelines of
Data Streaming Accelerator in Modern Intel Xeon Scalable Processors.
In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2.
37–54.

[43] Bojie Li, Zihao Xiang, Xiaoliang Wang, Han Ruan1 Jingbin Zhou, and
Kun Tan. 2023. FastWake: Revisiting Host Network Stack for Interrupt-
mode RDMA. Context 5 (2023), 9.

[44] Yueying Li, Nikita Lazarev, David Koufaty, Tenny Yin, Andy Anderson,
Zhiru Zhang, G Edward Suh, Kostis Kaffes, and Christina Delimitrou.
2024. LibPreemptible: Enabling Fast, Adaptive, and Hardware-Assisted
User-Space Scheduling. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 922–936.

[45] llvm.org. 2024. Garbage Collection Safepoints in LLVM. https://llvm.
org/docs/Statepoints.html.

[46] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
mussen, Brad Beckmann, Srikant Bharadwaj, Gabe Black, Gedare
Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jeronimo Cas-
trillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst,
Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar
Gope, Thomas Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas
Hansson, Swapnil Haria, et al. 2020. The gem5 Simulator: Version
20.0+. doi:10.48550/ARXIV.2007.03152

[47] Amirhossein Mirhosseini, Hossein Golestani, and Thomas F Wenisch.
2020. HyperPlane: A scalable low-latency notification accelerator for
software data planes. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 852–867.

[48] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: AchievingHigh CPU Efficiency for
Latency-sensitive Datacenter Workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 361–378.

[49] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, et al. 2015. The RAMCloud storage system.
ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 1–55.

[50] J.C. Park and M.S. Schlansker. 1991. On predicated execution. Technical
Report. Hewlett Packard Tech. Rep. HPL-91-58.

[51] Mike Parker. 2002. A case for user-level interrupts. ACM SIGARCH
Computer Architecture News 30, 3 (2002), 17–18.

[52] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zygos:
Achieving low tail latency for microsecond-scale networked tasks. In
Proceedings of the 26th Symposium on Operating Systems Principles.
325–341.

[53] Korakit Seemakhupt, Brent E Stephens, Samira Khan, Sihang Liu,
Hassan Wassel, Soheil Hassas Yeganeh, Alex C Snoeren, Arvind Krish-
namurthy, David E Culler, and Henry M Levy. 2023. A Cloud-Scale
Characterization of Remote Procedure Calls. In Proceedings of the 29th
Symposium on Operating Systems Principles. 498–514.

[54] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril Bordage, George
Bosilca, Alex Brooks, Philip Carns, Adrián Castelló, Damien Genet,
Thomas Herault, et al. 2017. Argobots: A lightweight low-level thread-
ing and tasking framework. IEEE Transactions on Parallel and Dis-
tributed Systems 29, 3 (2017), 512–526.

[55] Shumpei Shiina, Shintaro Iwasaki, Kenjiro Taura, and Pavan Balaji.
2021. Lightweight preemptive user-level threads. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 374–388.

[56] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and Josep Torrellas.
2023. 𝜇Manycore: A Cloud-Native CPU for Tail at Scale. In Proceedings
of the 50th Annual International Symposium on Computer Architecture.
1–15.

[57] Chandramohan A Thekkath and Henry M Levy. 1994. Hardware and
software support for efficient exception handling. In Proceedings of the
Sixth International Conference onArchitectural Support for Programming
Languages and Operating Systems. 110–119.

[58] Johnson Umeike, Siddharth Agarwal, Nikita Lazarev, and Mohammad
Alian. 2024. Userspace Networking in gem5. In 2024 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
179–191. doi:10.1109/ISPASS61541.2024.00026

[59] Kenton Varda. 2018. WebAssembly on Cloudflare Workers. https:
//blog.cloudflare.com/webassembly-on-cloudflare-workers/.

[60] WhatsApp Blog. 2011. 1 million is so 2011. https://blog.whatsapp.
com/196/1-million-is-so-2011

[61] Adam Wierman and Bert Zwart. 2012. Is tail-optimal scheduling
possible? Operations research 60, 5 (2012), 1249–1257.

[62] Jisoo Yang, Dave B Minturn, and Frank Hady. 2012. When poll is better
than interrupt.. In FAST, Vol. 12. 3–3.

[63] Yifan Yuan, Ren Wang, Narayan Ranganathan, Nikhil Rao, Sanjay
Kumar, Philip Lantz, Vivekananthan Sanjeepan, Jorge Cabrera, Atul
Kwatra, Rajesh Sankaran, et al. 2024. Intel accelerators ecosystem:
An soc-oriented perspective: Industry product. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA).
IEEE, 848–862.

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-qat.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-qat.html
https://www.intel.com/content/www/us/en/developer/articles/technical/scalable-io-between-accelerators-host-processors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/scalable-io-between-accelerators-host-processors.html
https://llvm.org/docs/Statepoints.html
https://llvm.org/docs/Statepoints.html
https://doi.org/10.48550/ARXIV.2007.03152
https://doi.org/10.1109/ISPASS61541.2024.00026
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.whatsapp.com/196/1-million-is-so-2011
https://blog.whatsapp.com/196/1-million-is-so-2011

	Abstract
	1 Introduction
	2 Limitations of User-Level Notification
	3 Characterizing Intel UIPI
	3.1 UIPI Overview
	3.2 Sending and Receiving UIPIs
	3.3 Architecture View
	3.4 UIPI Performance
	3.5 Deconstructing the UIPI Microarchitecture

	4 xUI: Extended User Interrupts
	4.1 Overview
	4.2 Tracked Interrupts
	4.3 The Kernel Bypass (KB) Timer
	4.4 Hardware Safepoints
	4.5 Interrupt Forwarding: Routing Device Interrupts

	5 Experimental Methodology
	5.1 Hardware Platform
	5.2 gem5 Simulation
	5.3 Preemptive Scheduling with UIPI and xUI
	5.4 IO Notification: L3Fwd & Simulated Accelerators

	6 Evaluation
	6.1 xUI Features
	6.2 End-to-End Evaluation

	7 Related Work
	8 Conclusion
	A Artifact
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Methodology

	References

